Groupe: _____ Date: ____

Récrivez les expressions logarithmiques suivantes à l'aide d'un seul logarithme et sans exposant.

a)
$$\log_6 7^2 + 3 \log_6 7$$

b)
$$\log_4 8 + \log_4 8$$

c)
$$\log_3 5^3 - \log_3 5$$

d)
$$\log_5 5 + \log_5 5^2 - \log_5 5$$

e)
$$4 \log_2 3 + 2 \log_2 3$$

f)
$$3 \log_x b - 2 \log_x b$$

2 Résolvez les équations suivantes.

a)
$$5^{2x-3} = 125$$

b)
$$\log_4(x+6) = 3$$

c)
$$2^{3x-1} = 4^{2x+3}$$

d)
$$\log_2(5x-3)^4=12$$

e)
$$\log_3 \sqrt{x+2} = 1$$

$$f) \ 2^{4x+1} = 3^{2x-1}$$

Groupe: _____ Date: _____

Pour chacune des fonctions suivantes, déterminez les propriétés.

- 1) L'équation de l'asymptote.
- 2) Le domaine.
- 3) La croissance.

4) Le signe.

5) Le zéro.

6) La valeur initiale.

a)
$$f(x) = 5 \log_4(x+6) - 3$$

- **b)** $g(x) = 8(0,4)^x 9$
- 1) _____
- 1) _____
- 2) _____
- 2) _____
- 3) _____
- 3) _____
- 4) _____
- 4) _____
- 5) _____
- 5) _____
- 6) _____
- 6) _____

c) $h(x) = \log_{\frac{1}{2}}(x-1)$

- d) $i(x) = -2(5)^x 10$
- 1) _____
- 1) _____
- 2) _____
- 2) _____
- 3) _____
- 3) _____
- 4) _____
- 4) _____
- 5) _____
- 5) _____
- 6) _____
- 6) _____

Déterminez la règle de la réciproque des fonctions suivantes.

a)
$$f(x) = 3(4)^{x+5} - 9$$

b)
$$g(x) = 0.5 \ln(x - 7) + 1$$

c)
$$h(x) = \frac{4}{5} \left(\frac{1}{2}\right)^x - 3$$

d)
$$i(x) = \log(x+5)^2 - 4$$

e)
$$j(x) = 0.4e^{x+1}$$

f)
$$k(x) = \log_3 \sqrt{x+6}$$

Résolvez les équations logarithmiques suivantes.

a)
$$\log_2(3x-1) + \log_2(3x-1) = 6$$

a)
$$\log_2(3x-1) + \log_2(3x-1) = 6$$
 b) $\log_3(2x-7)^2 + \log_3(2x-7)^4 = 12$

c)
$$3 \log(5x + 1) - 10 = 4$$

d)
$$7 \log_5 x - \log_5 x^4 = 4$$

e)
$$\log_4 x + \log_4 x = 3$$

f)
$$2 \ln x + \ln x^4 - 3 \ln x = 5$$

Nom: _____

Groupe: _____ Date: ____

(suite)

- 6 Résolvez les inéquations suivantes.
 - a) $4 \log_3(x-6) \ge 8$

b) $3,7(5)^x + 4 < 2$

c) $2(\frac{1}{3})^x - 5 > 157$

d) $6 \le -3 \log_4(x+2)$

- e) $-2 \log (x 3) + 7 \le 5$
- f) $10 < 5e^{2x} + 4$

- Lors d'une expérience de laboratoire dans un cours de physique, des élèves mesurent la vitesse d'un mobile. La règle suivante permet de calculer la vitesse du mobile en mouvement: $f(x) = 5 \log_4(x + 1)$, où x représente le temps (en sec), et f(x) représente la vitesse en m/s.
 - a) Dans ces conditions, quelle est la vitesse du mobile au début de l'expérience?
 - b) Quelle est la vitesse du mobile:
 - 1) après 2 secondes?

- 2) après 10 secondes?
- c) Après combien de temps le mobile atteint-il une vitesse de 7,5 m/s?

Renforcement 3.3

- 1. a) $5\log_6 7$
 - d) 2log₅5
- **2.** a) x = 3
 - d) x = 2.2
- 3. a) 1) x = -6
 - 4) Positif: [≈ -3,7, +∞[Négatif:]-6, ≈ -3,7]
 - **b)** 1) y = -9
 - 4) Négatif: $[\approx -0.13, +\infty[$ Positif: $]-\infty, \approx -0.13]$
 - c) 1) x = 1
 - 4) Positif:]1, 2] Négatif: [2, +∞[
 - **d)** 1) y = -10
 - 4) Négatif: ℝ
- 4. a) $f^{-1}(x) = \log_{\frac{1}{2}}(x+9) 5$
 - d) $i^{-1}(x) = 10^{0.5x + 2} 5$
- 5. a) x = 3
 - d) $x \approx 8,55$
- **6.** a) $x \ge 15$
 - d) $-2 < x \le -\frac{31}{16}$

- **b)** 2log₄8
- **e)** 6log₂3
- **b)** x = 58
- **e)** x = 7
- 2)]-6, +∞[
- 5) $x \approx -3.7$
- **2**) ℝ
- 5) $x \approx -0.13$
- 2)]1, +∞[
- 5) x = 2
- **2**) ℝ
- 5) Aucun zéro.
- **b)** $g^{-1}(x) = e^{2(x-1)} + 7$
- e) $j^{-1}(x) = \ln(2,5x) 1$
- **b)** x = 8
- **e)** x = 8
 - b) Aucune solution.
 - **e)** $x \le -7$

- c) 2log₃5
- f) $\log_x b$
- c) x = -7
- f) $x \approx -3.11$
- 3) Croissante sur]-6, $+\infty$ [.
- 6) $y \approx 3,46$
- 3) Décroissante sur \mathbb{R} .
- 6) y = -1
- 3) Décroissante sur]1, +∞[.
- 6) Aucune valeur initiale.
- 3) Décroissante sur \mathbb{R} .
- 6) y = -12
- c) $h^{-1}(x) = \log_{\frac{1}{2}} \frac{5}{4}(x+3)$
- f) $k^{-1}(x) = 3^{2x} 6$
- c) $x \approx 9282,98$
- f) $x \approx 5,29$
 - c) x < -4
 - f) $x > \approx 0.09$

- 7. a) 0 m/s
 - b) 1) Sa vitesse est d'environ 3,96 m/s.
 - c) $7.5 = 5 \log_4(x + 1)$ $1.5 = \log_4(x + 1)$ $4^{1.5} = x + 1$ x = 7

Il atteint une vitesse de 7,5 m/s à 7 s.

2) Sa vitesse est d'environ 8,65 m/s.