3.03 Les paramètres de la fonction exponentielle

Déterminer les liens existants entre la variation d'un paramètre de la règle d'une fonction et la transformation du graphique cartésien correspondant.

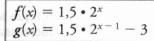
- La règle de la fonction exponentielle généralisée $f(x) = a \cdot c^{b(x-b)} + k$ contient les mêmes paramètres a, b, h et k que l'on trouve dans les autres fonctions réelles et ils s'interprètent graphiquement de la même L'axe de
 - 1) un changement de signe des paramètres a ou b provoque une réflexion du graphique selon un axe horizontal (pour a) ou vertical (pour b);

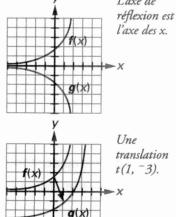
Exemple: $f(x) = 1.5 \cdot 2^x$ $g(x) = -1.5 \cdot 2^x$

2) les paramètres h et k sont associés à une translation t(h, k).

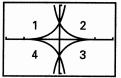
Exemple:

façon. En particulier:

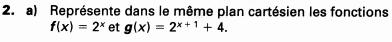




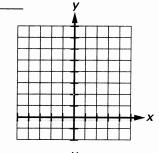
- Une calculatrice affiche le graphique de quatre fonctions exponentielles. La courbe 1 est associée à l'équation $y = 10^x$.
 - a) Quelle courbe est associée à l'équation $y = -10^x$?
 - b) Quelle transformation géométrique permet d'appliquer la courbe 1 à cette courbe?



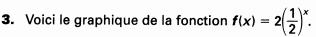
- c) Quelle courbe est associée à l'équation $y = 10^{-x}$?
- Quelle transformation géométrique permet d'appliquer la courbe 1 à cette courbe?
- Quelle est l'équation associée à la dernière courbe?



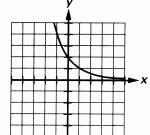
b) Quelle transformation géométrique applique le graphique de f sur le graphique de g?



- Quelle est l'équation de cette asymptote?



- a) Trace l'image de cette courbe par la translation t(1, -5).
- b) Quelle est la règle de la fonction a représentée par cette nouvelle courbe?



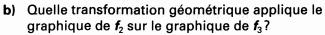
4. Voici quatre fonctions exponentielles.

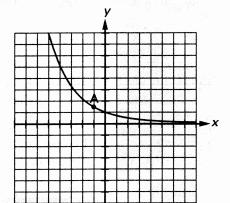
$$f_1(x) = \left(\frac{2}{3}\right)^x$$

 $f_2(x) = 2\left(\frac{2}{3}\right)^x$

 $f_3(x) = -2\left(\frac{2}{3}\right)^x$ $f_4(x) = -2\left(\frac{2}{3}\right)^{x+2} + 3$

a) Quelle transformation géométrique applique le graphique de f_1 sur le graphique de f_2 ?

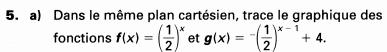


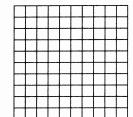


c) Quelle transformation géométrique applique le graphique de f_3 sur le graphique de f_4 ?

d) À l'aide de ces transformations géométriques et du graphique de f_1 déjà tracé, trace le graphique des trois autres fonctions.

Situe sur chaque courbe l'image du point $A\left(-1, \frac{3}{2}\right)$ par ces transformations successives.



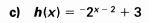


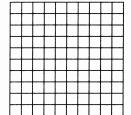
b) Quelle suite de transformations géométriques permet d'appliquer le graphique de f sur le graphique de g?

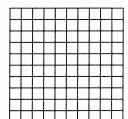
6. Représente graphiquement chacune des fonctions en utilisant, au besoin, des transformations géométriques.

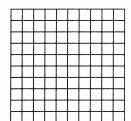
a)
$$f(x) = \frac{1}{2} \cdot 2^x - 2$$

b)
$$g(x) = 2^{-(x-2)}$$



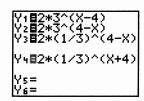


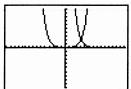




7. En voulant afficher les graphiques de quatre fonctions exponentielles sur la calculatrice, Judith n'a obtenu que trois courbes. Elle en a déduit que deux des équations correspondent à la même courbe.

Associe chaque équation à la courbe qui la représente. (Relie par un trait l'équation à la courbe.)





Manager.	C	D .	≠ 1 her
Nom:	Groupe:	Date:	Evaluation:

3.04 Équations exponentielles l

O.I. 1.3.3 Trouver l'ensemble-solution d'équations exponentielles ou logarithmiques en utilisant les propriétés des exposants ou des logarithmes.

THE RESIDENCE AND A RESIDENCE OF THE PROPERTY OF THE PROPERTY

Certaines équations exponentielles peuvent se résoudre en exprimant chaque membre de l'équation sous la forme d'une puissance ayant la même base.

Exemple: Résoudre l'équation $5 \cdot 2^{x+2} = 10$.

Solution : En divisant par 5 de chaque côté, on isole la puissance de 2 : $2^{x+2} = 2$. L'égalité des puissances de 2 entraîne l'égalité des exposants : x + 2 = 1. Il ne reste plus qu'à résoudre cette équation du premier degré : x = -1.

Il est parfois nécessaire d'utiliser les propriétés des exposants pour simplifier une expression. Ces propriétés sont également valables pour les exposants réels.

1)
$$a^x \cdot a^y = a^{x+y}$$

2)
$$a^x \div a^y = a^{x-y}$$
 3) $(a^x)^y = a^{xy}$

$$3) (a^x)^y = a^{xy}$$

1. Résous les équations suivantes.

a)
$$5^{x-1} = 125$$

b)
$$3^{x+3} = \frac{1}{3}$$

c)
$$-2(1,5)^{2x} = -3$$

d)
$$3(10)^{x+2}-1=2$$

e)
$$-2(2^{2x}-1)=1$$

f)
$$10(2,5)^{\frac{x}{5}} - 2,5 = 60$$

2. Utilise les propriétés des exposants pour résoudre les équations suivantes.

a)
$$3^x \cdot 3^{x+1} = \frac{1}{3}$$

b)
$$\frac{5^{x+1}}{5^{2x}} = \frac{1}{25}$$

c)
$$3(8)^{2x} = 48$$

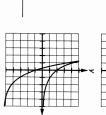
d)
$$\left(\frac{1}{2}\right)^{x-1} = 32^x$$

e)
$$(2^x)^3 = 8 \cdot 2^x$$

$$5^x + 5^{x+1} = 0.24$$

- 1. Une calculatrice affiche le graphique de quatre fonctions exponentielles. La courbe 1 est associée à l'équation $y=10^x$.
- <u>a</u> Quelle courbe est associée à l'équation $y = -10^x$? La courbe 4.
- ₫ Quelle transformation géométrique permet d'appliquer la courbe 1 à

- Une réflexion par rapport à l'axe des x
- ڡ 0 Quelle transformation géométrique permet d'appliquer la courbe 1 à cette courbe? Quelle courbe est associée à l'équation $y = 10^{-x}$? La courbe 2 Une réflexion par rapport à l'axe des y
- 9 Quelle est l'équation associée à la dernière courbe? $y = -10^{-x}$
- 2. a) Représente dans le même plan cartésien les fonctions $f(x) = 2^x$ et $g(x) = 2^{x+1} + 4$.
- ₫ Quelle transformation géométrique applique le graphique de f sur le graphique de g? Une translation t(-1, 4)
- Trace en pointillé l'asymptote de la fonction g.
- ڡ Quelle est l'équation de cette asymptote?
- **3.** Voici le graphique de la fonction $f(x) = 2\left(\frac{1}{2}\right)^x$. Trace l'image de cette courbe par la translation t(1, -5)
- Quelle est la règle de la fonction **g** représentée par cette nouvelle courbe? $g(x) = 2\left(\frac{1}{2}\right)^{x-1}$



7.

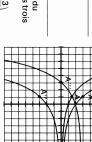
Voici quatre fonctions exponentielles.

$$f_1(x) = \left(\frac{2}{3}\right)^x$$
 $f_2(x) = 2\left(\frac{2}{3}\right)^x$

$$\mathbf{f}_3(x) = -2\left(\frac{2}{3}\right)^x$$

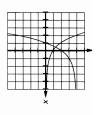
$$f_4(x) = -2\left(\frac{2}{3}\right)^{x+2} + 3$$

- æ Quelle transformation géométrique applique le graphique de f_1 sur le graphique de f_2 ? Un étirement vertical de facteur 2.
- ₫ Quelle transformation géométrique applique le graphique de f_2 sur le graphique de f_3 ? Une réflexion par rapport à l'axe des x.
- ೦ Quelle transformation géométrique applique le graphique de f_3 sur le graphique de f_4 ? Une translation t(-2, 3).
- 9 À l'aide de ces transformations géométriques et du graphique de f_1 déjà tracé, trace le graphique des trois Situe sur chaque courbe l'image du point $\mathbf{A}\left(-1,\frac{3}{2}\right)$ par ces transformations successives.



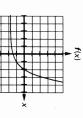
- 51 ₫ a) Dans le même plan cartésien, trace le graphique des fonctions $f(x) = \left(\frac{1}{2}\right)^x$ et $g(x) = -\left(\frac{1}{2}\right)^{x-1}$
- Quelle suite de transformations géométriques permet d'appliquer le graphique de ${\it f}$ sur le graphique de ${\it g}$? Une réflexion par rapport à l'axe des x, suivie d'une

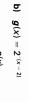
translation t(1/+4),

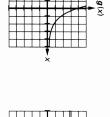


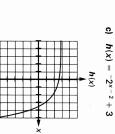
6 Représente graphiquement chacune des fonctions en utilisant, au besoin, des transformations géométriques.

a)
$$f(x) = \frac{1}{2} \cdot 2^x - 2$$



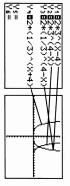






fonctions exponentielles sur la calculatrice, Judith n'a obtenu que trois courbes. Elle en a déduit que En voulant afficher les graphiques de quatre courbe. deux des équations correspondent à la même

Associe chaque équation à la courbe qui la représente. (Relie par un trait l'équation à la



1- a)
$$x=4$$
 b) $x=-4$ c) $x=0,5$
f) $x=10$

2- a)
$$x= -1$$
 b) $x= 3$ c) $x= 2/3$

d)
$$x=1/6$$
 e) $x=3/2$