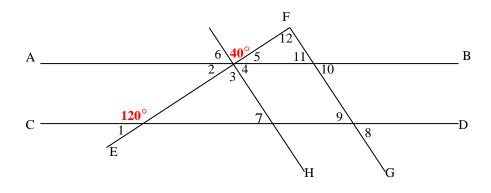
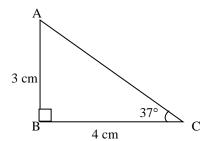
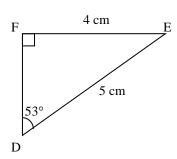
École secondaire Montcalm CST-4


Nom:______

Chapitre 2 : document #1 Triangles isométriques


1. Trouver la mesure des angles suivants en justifiant chaque réponse.


c) *m*
$$\angle$$
 3 = ______ : ______ :

Note: $\overline{AB}//\overline{CD}$ et $\overline{HI}//\overline{FG}$

2. Soient les triangles rectangles suivants.

Trouver les mesures manquantes. a)

$$m\angle A = \underline{\qquad \qquad}$$

 $m\angle E = \underline{\qquad \qquad}$

$$m\overline{AC} = \underline{\qquad \qquad }$$
 $m\overline{FD} = \underline{\qquad \qquad }$

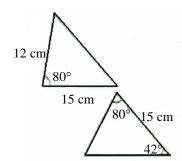
Vérifier si ces triangles sont isométriques, c'est-à-dire vérifier si les angles b) correspondants sont isométriques et si les côtés homologues sont isométriques.

$$\angle A \cong \underline{\hspace{1cm}};$$
 $AB \cong \underline{\hspace{1cm}};$

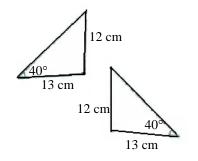
$$\frac{\angle B}{BC} \cong \underline{\qquad}; \qquad \underline{\angle C} \cong \underline{\qquad}$$

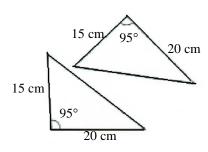
$$\frac{\angle C}{AC} \cong \underline{\qquad}; \qquad \overline{AC} \cong \underline{\qquad}$$

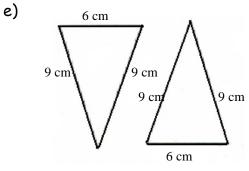
$$\angle C \cong \underline{\qquad}$$


Donc _____

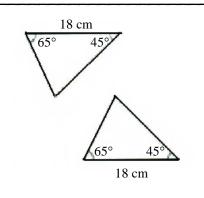
3. Peut-on conclure que les triangles sont isométriques si l'on ne connaît que les mesures des angles ou des côtés indiquées sur les figures? Si oui, indique le cas d'isométrie (CCC, CAC ou ACA).


a)

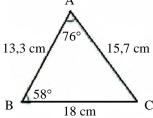

b)



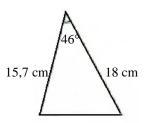
c)



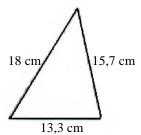
d)

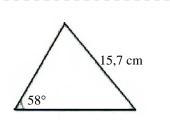


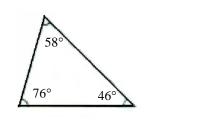
f)



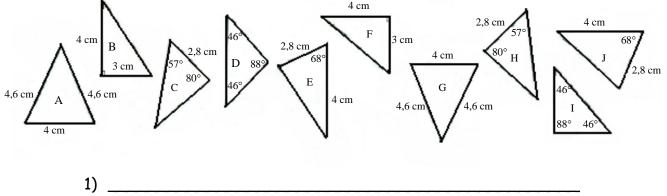
4. Soit le $\triangle ABC$ ci-contre.


Vérifier si les triangles suivants, dont certaines mesures sont indiquées, sont isométriques au ΔABC . ^{13,3 cm} Indiquer ensuite le cas d'isométrie utilisé.

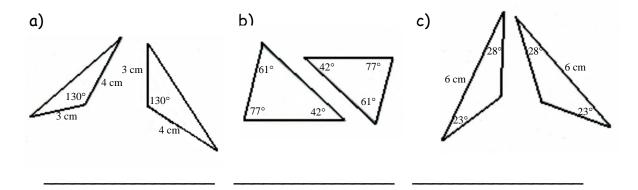

a)


b)

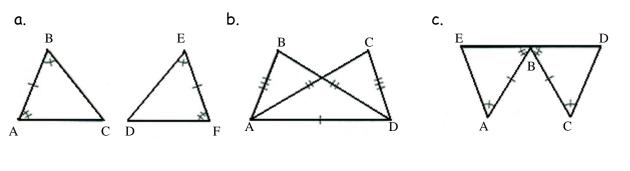
c)

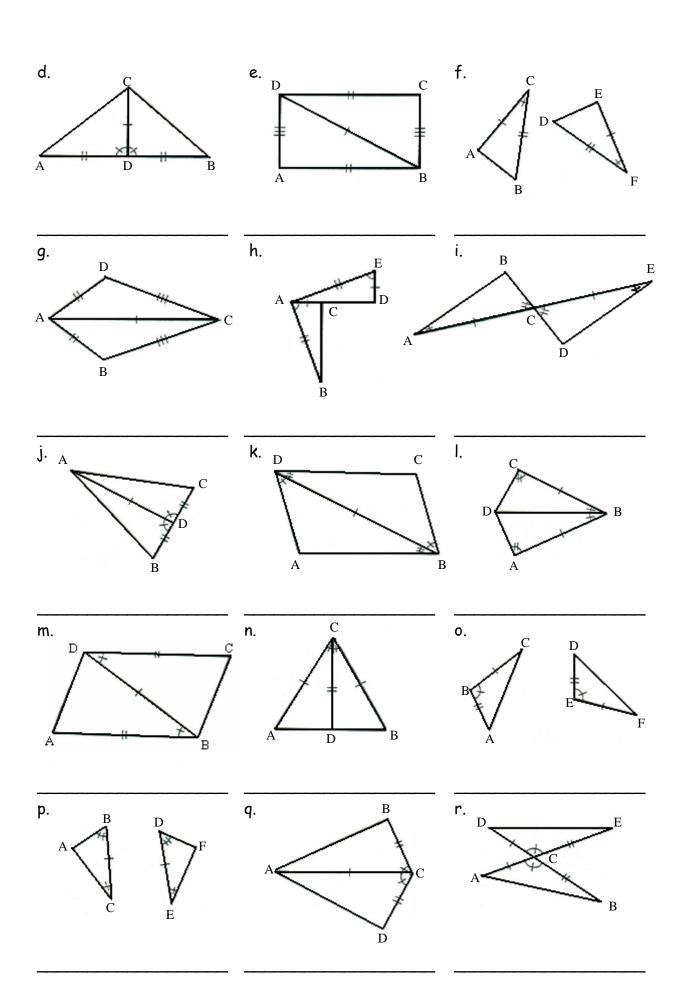


d)

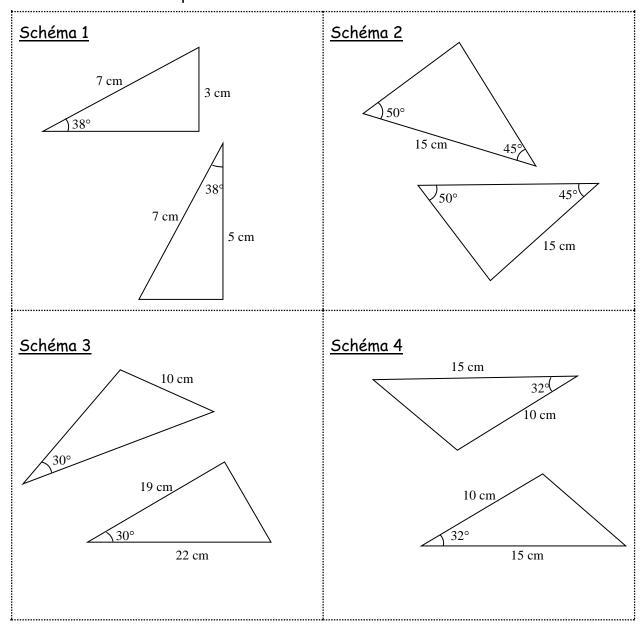


5. Voici 10 triangles:

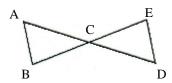

Trouver les quatre paires de triangles isométriques et justifier votre réponse par le cas d'isométrie approprié.



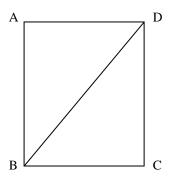
- 2)
- 2) _____
- 3) _____
- 4) _____
- 6. Indiquer si les triangles sont isométriques et quel est le cas d'isométrie qui nous permet de l'affirmer.



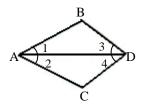
7. Déterminer la propriété (CCC, CAC, ACA) qui permet de conclure que les triangles sont isométriques.



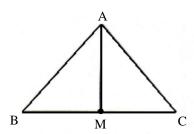
8. Si on ne dispose que des mesures inscrites sur les figures, dans lequel des schémas ci-dessous est-on assuré d'avoir deux triangles isométriques ? Justifier votre réponse


Réponse :	 		
•			

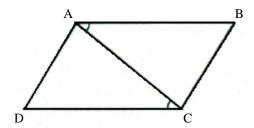
9. Dans la figure ci-dessous, le point C est le milieu des segments AD et BE. Montrer que les deux triangles ABC et CDE sont isométriques.


AFFIRMATIONS	JUSTIFICATIONS
	
	

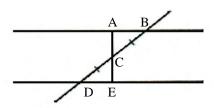
10. Montrer que la diagonale du rectangle ABCD sépare celui-ci en deux triangles isométriques.


AFFIRMATIONS	JUSTIFICATIONS
	
	
	

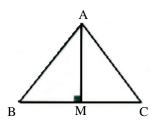
11. Dans la figure ci-dessous, le segment AD est la bissectrice des angles BAC et BDC. Prouver que les triangles ABD et ACD sont isométriques.


AFFIRMATIONS	JUSTIFICATIONS
	

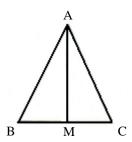
12. Le segment AM est la médiane issue de A du triangle isocèle ABC. Montrer que les triangles ABM et AMC sont isométriques.


AFFIRMATIONS		JUSTIFICATIONS
	•	
	•	
	•	
		

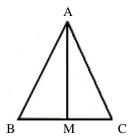
13. Montrer que la diagonale du parallélogramme ABCD sépare celui-ci en deux triangles isométriques.


AFFIRMATIONS	JUSTIFICATIONS
	

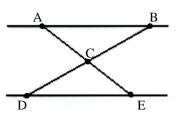
14. On donne deux parallèles coupées par une sécante. On trace une autre sécante passant par le point milieu du segment sécant compris entre les parallèles. On veut montrer que les deux triangles ainsi formés sont congrus.


AFFIRMATIONS	JUSTIFICATIONS
	-
· ·	

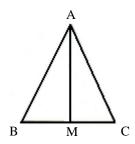
15. Soit le triangle équilatéral ABC et la hauteur AM issue du sommet A. Montrer que les triangles ABM et ACM sont isométriques en utilisant la propriété CCC.


AFFIRMATIONS		JUSTIFICATIONS
	•	

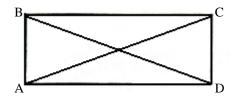
16. Soit le triangle isocèle ABC et la médiatrice AM issue du sommet A. Montrer que les triangles ABM et AMC sont isométriques en utilisant la propriété ACA.


AFFIRMATIONS	JUSTIFICATIONS
	
	

17. Soit le triangle isocèle ABC et la médiatrice AM issue du sommet A. Montrer que les triangles ABM et AMC sont isométriques en utilisant la propriété CAC.

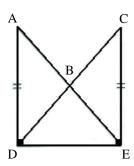

AFFIRMATIONS	JUSTIFICATIONS

18. Les droites AB et DE sont parallèles et le point C est le milieu du segment AE. Détermine la mesure de \overline{AB} sachant que la m $\overline{DE}=8$ cm


AFFIRMATIONS	JUSTIFICATIONS

19. Soit le triangle isocèle ABC et la médiane AM. Montrer que $\angle BAM \cong \angle MAC$. Démontre d'abord que les triangles ABM et AMC sont isométriques par le cas d'isométrie CCC.

AFFIRMATIONS		JUSTIFICATIONS
	•	
	•	
	•	
	•	
	•	


20. Démontrer que : Dans tout rectangle, les diagonales sont isométriques.

AFFIRMATIONS	JUSTIFICATIONS
	
	

21. Soit la figure ci-contre :

Montrer que le segment AE est isométrique au segment CD.

	JUSTIFICATIONS
_	