CORRIGÉ DU VOLUME

VISION 4: Les Vecteurs

Mathématique 5^e secondaire Sciences naturelles

VISIAN Les vecteurs

RÉVISION 4

Réactivation 1 a. 1) Le sinus de cet angle aigu. **3)** La tangente de cet angle aigu. **b. 1)** ≈ 4.76 cm **2)** ≈ 3.1 cm

Page 4

2) $\approx 8,89 \text{ cm}$ 2) $\approx 79,11^{\circ}$

2) ≈ 79,11°

b. 1) ≈ 4,76 cm **c. 1)** ≈ 7,09 cm **d. 1)** ≈ 75,96°

C. A ≈ 124,5 km.

m ND m PN m PD

b. Loi des cosinus : $(m \overline{ND})^2 = (m \overline{PN})^2 + (m \overline{PD})^2 - 2(m \overline{PN})(m \overline{PD})\cos P$

a. Il s'agit d'un triangle scalène et obtusangle.

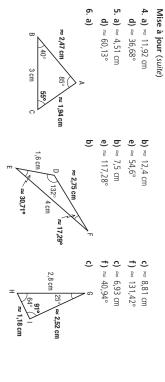
Réactivation 2

d. Loi des sinus : $\frac{m \overline{ND}}{\sin P} = \frac{m \overline{PN}}{\sin D} = \frac{m \overline{PD}}{\sin N}$

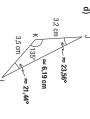
e. ≈ 9,58°

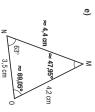
f. $\approx 24,58^{\circ}$

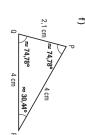
Mise à jour		Page 8
1. a) ≈ 44,96°		b) ≈ 60,68°
c) ≈ 30,58°		d) ≈ 59,92°
2. a) m \angle C = 34°; m $\overline{AB} \approx$ 2,29 cm; m $\overline{BC} \approx$ 3,40 cm	29 cm; m $\overline{BC} \approx 3,40$ cm	b) m \angle D = 57°; m $\overline{DE} \approx 5,37$ cm; m $\overline{DF} \approx 2,92$ cm
c) m \angle H = 30°; m $\overline{\text{GI}}$ = 2,5 cm; m $\overline{\text{IH}}$ \approx 4,33 cm	$.5 \text{ cm; m } \overline{\text{IH}} \approx 4,33 \text{ cm}$	d) m \angle J = 20°; m $\overline{JL} \approx 4,40$ cm; m $\overline{JK} \approx 4,68$ cm
e) m \angle N = 65°; m $\overline{\text{MN}} \approx$ 5,68 cm; m $\overline{\text{MO}} \approx$ 5,15 cm	5,68 cm; m $\overline{\text{MO}} \approx 5$,15 cm	f) m \angle P = 45°; m \overline{PR} = 3,3 cm; m \overline{PQ} \approx 4,67 cm
3. a) 30°	b) ≈ 78,46°	c) ≈ 63,43°
d) ≈ 162,54°	e) ≈ 115,84°	f) ≈ 130,54°



© 2011, Les Éditions CEC inc. • Reproduction autorisée







Mise	Mise à jour (suite)	
7.	Pente (%)	Inclinaison (°)
a)	2	≈ 1,15
ق	≈ 5,24	3
<u></u>	6	≈ 3,43
<u>a</u>	≈ 8,75	5
e)	10	≈ 5,71
<u></u>	≈ 17,63	10

Mise à jour (suite)

10. a) Dans ses calculs, cette élève a oublié de prendre en considération le fait que l'angle B est obtus.

b) m ∠ B ≈ 129,94° m ∠ C ≈ 20,06°

8. a) 1) cos B ou sin A.b) 1) Vrai.

2) sinB ou cosA.2) Vrai.

3) tan A3) Faux.

4) tan B4) Faux.

9. ≈ 11,76 m

 $m\,AB \approx 2,06\;cm$ **11.** a) $\approx 14,97\;km$ b) Avion A: $\approx 18,88^{\circ}$; avion B: 30° .

avion B : 30°. c) \approx 1300,97 m

12. a) 1) $\sqrt{2^2 + 2.5^2 - 10\cos 112.5^\circ} \approx 3.75$ km séparent Mireille et Jacques.

Mise à jour (suite)

2) $\sqrt{2}$, $5^2 + 3$, $6^2 - 18 \cos 112$, $5^\circ \approx 5$, 11 km séparent Mireille et Jacques.

Mireille 2.5 km Point de départ

22,5° 2,5 km Page 9

b) Loi des sinus : $\frac{5.11}{\sin 112.5^{\circ}} \approx \frac{2.5}{\sin x} \Rightarrow x \approx 26.88^{\circ}$. On a donc $26.88^{\circ} - 22.5^{\circ} \approx 4.38^{\circ}$.

13. L'itinéraire B est le moins coûteux. (Il en coûte environ 180,30 \$ pour l'itinéraire B et environ 221,05 \$ pour l'itinéraire A.)

14. a) La longueur totale des tiges métalliques est environ de 13,05 m.

c) ≈ 50

VISION 4 ■ Ressources supplémentaires • Corrigé du manuel SN – Vol. 2

© 2011, Les Éditions CEC inc. • Reproduction autorisée

Mise à jour (suite)

15. a)
$$\frac{r}{\sin 30^{\circ}} = \frac{3}{\sin 120^{\circ}} \Rightarrow r \approx 2,89 \text{ cm}$$

$$_{5} \Rightarrow r \approx 2,89 \text{ cm}$$
 b) $\frac{r}{\sin 45^{\circ}} = \frac{5}{\sin 90^{\circ}} \Rightarrow r \approx 3,54 \text{ cm}$

c)
$$\frac{r}{\sin 60^{\circ}} = \frac{3}{\sin 60^{\circ}} \Rightarrow r = 5 \text{ cm}$$

16. a) $\approx 159,66 \text{ m}$

d) $\frac{1}{\sin 67.5^{\circ}} =$

 $=\frac{1}{\sin 45^\circ} \Rightarrow r \approx 6,53 \text{ cm}$

$$2$$
) $\approx 1,45 \text{ cm}$
3,44 m 2) $\approx 34,38 \text{ m}$

17. a) 1)
$$\approx 0.15$$
 cm **b) 1)** ≈ 3.44 m

b)
$$\approx$$
 19 225,22 m²
2) \approx 1,45 cm

c) Les pixels sont indiscernables pour des distances supérieures à environ 24,06 m.

d) \approx 111,7 km

4.1

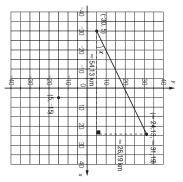
Les caractéristiques d'un vecteur

- Puisque l'hydravion s'est déplacé durant 20 min, il a parcouru une distance par rapport à l'axe est-ouest). de $\frac{150}{3}$ km, soit 50 km en direction N.-N.-E. (67,5° dans le sens antihoraire
- Ce déplacement est équivalent à une succession de deux déplacements
- un déplacement vers la droite de 50 cos 67,5°, soit \approx 19, 13 km; un déplacement vers le haut de 50 sin 67,5°, soit \approx 46,19 km.

On en déduit les renseignements du schéma ci-contre.

- le déplacement de l'hélicoptère est $\approx \sqrt{54,13^2+26,19^2}$ soit ≈ 60,13 km;
- $-x \approx \arctan \frac{26,19}{54,13}$, soit $\approx 25,74^{\circ}$.

le sens antihoraire par rapport à l'axe est-ouest. il doit voler à 240 km/h avec une orientation de 26° mesurée dans En conclusion, puisque l'hélicoptère doit franchir 60 km en 15 min,



Page 15

- a. Ces renseignements n'indiquent pas l'orientation du déplacement de chaque satellite.
- b. 1) Bien qu'on sache que les deux satellites se déplacent dans une même direction, on ne connaît pas le sens
- 2) Il faut aussi connaître le sens dans lequel chaque satellite se déplace le long de la droite
- c. ① Oui, car les satellites se déplacent l'un vers l'autre.
 ② Non, car les deux satellites ont la même vitesse et se déplacent dans le même sens. Le satellite de gauche ne rattrapera donc jamais celui de droite.
- ω Le satellite de gauche finira donc par rejoindre le satellite de droite. Oui, car le satellite de gauche a une vitesse supérieure au satellite de droite et ils se déplacent dans le même sens.
- © 2011, Les Éditions CEC inc. Reproduction autorisée
- VISION 4 Ressources supplémentaires Corrigé du manuel SN Vol. 2

ω

Activité 2

Page 13

Page 16

- a. 1) Des vecteurs équipollents sont des vecteurs qui ont la même grandeur et la même orientation. Ce sont des vecteurs identiques.
- 2) Des vecteurs opposés sont des vecteurs qui ont la même grandeur, la même direction, mais un sens opposé.
- 3) Des vecteurs colinéaires sont des vecteurs qui ont la même direction.
- b. Il y a huit vecteurs différents.

Activité 2 (suite)

Page 17

- Le vecteur jaune et le vecteur gris.
- 2) Plusieurs réponses possibles. Exemple : Le vecteur jaune et le vecteur noir
- 3) Plusieurs réponses possibles. Exemple : Le vecteur gris et le vecteur vert.
- d. Pour chaque vecteur, on obtient le premier nombre du couple en soustrayant l'abscisse de l'origine de la flèche de l'abscisse de la pointe de la flèche. de la pointe de la flèche, et le second nombre du couple, en soustrayant l'ordonnée de l'origine de la flèche de l'ordonnée
- e. 1) (2, 4)

Page 14

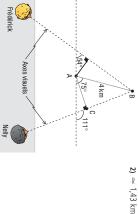
- 2) (2, 4) **3)** (-2, -4)
- **f.** 1) $\approx 6.4 \text{ u}$ **2)** $\approx 51,34^{\circ}$
 - 4) $(x_2 x_1, y_2 y_1)$

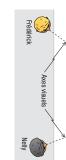
a. Un vecteur permet de tenir compte du fait qu'un déplacement est défini non seulement par sa longueur, mais aussi par son orientation.

Page 18

Activité 3

c. 1





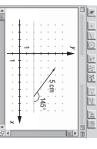
Technomath

- a. Leur origine est située au même endroit, soit A(3, 2).
- b. Ecran 2 : 1) ≈ 3 **2)** 3
- Ecran $3:1) \approx -4$
- 2) -4 Ecran $\mathbf{4}:\mathbf{1})\approx 1$
- c. Si l'orientation d'un vecteur AB correspond à l'angle mesuré dans le sens antihoraire qu'il forme avec la partie de l'horizontale située à droite de l'origine du vecteur, la différence entre les abscisses des points B et A correspond à la distance entre les points A et B multipliée par le cosinus de l'orientation de ce vecteur.
- Ecran $3:1)\approx 2$ 2) 2 Ecran $\mathbf{4}:\mathbf{1})\approx -4$

d. Ecran **2** : **1**) ≈ 2

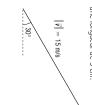
2) 2

- e. Si l'orientation d'un vecteur AB correspond à l'angle mesuré dans le sens antihoraire qu'il forme avec la partie de la distance entre les points A et B multipliée par le sinus de l'orientation de ce vecteur. l'horizontale située à droite de l'origine du vecteur, la différence entre les ordonnées des points B et A correspond à
- VISION 4 Ressources supplémentaires Corrigé du manuel SN Vol. 2
- © 2011, Les Éditions CEC inc. Reproduction autorisée



Mise au point 4.1

- 1. a) Une grandeur vectorielle.
- d) Une grandeur vectorielle.
- 2. a) Le vecteur doit avoir une longueur de 5 cm



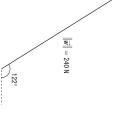
e) Une grandeur scalaire b) Une grandeur scalaire

c) Une grandeur vectorielle.

Page 23

- b) Le vecteur doit avoir une longueur de 7 cm.

d) Le vecteur doit avoir une longueur de 6 cm.



e) Le vecteur doit avoir une longueur de 5 cm.

ó

f) Le vecteur doit avoir

 $\|\overrightarrow{NM}\| = 0.5 \text{ mm}$



- 3. a) 1) AB et MN.
- 2) Plusieurs réponses possibles. Exemple : AB et EF
- b) AB, CD et MN.
- c) Plusieurs réponses possibles. Exemple : AB et CD ainsi que EF et KL.

© 2011, Les Éditions CEC inc. • Reproduction autorisée

VISION 4 ■ Ressources supplémentaires • Corrigé du manuel SN – Vol. 2

ū

6

Mise au point 4.1 (suite)

4. a) \approx (3,21, 3,83) **b)** \approx (-35, 60,62) **f)** \approx (-0,82, -0,57)

c) \approx (8,16,-9,73) g) \approx (-8,19,-5,74)

h) \approx (176, 78, 176, 78) **d)** \approx (-786,65, -2161,29)

Page 24

b) $\|\overrightarrow{w}\| = 3\sqrt{5}$; orientation : $\approx 63,43^{\circ}$.

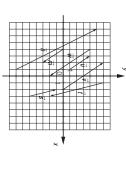
- e) (0, -0,5)
- **5. a)** $\|\vec{v}\| = \sqrt{2}$; orientation : 45°.
- c) $\|\vec{u}\| = 5\sqrt{5}$; orientation : $\approx 26,57^{\circ}$.
- **e)** $\|\vec{t}\| = \sqrt{65}$; orientation : $\approx 240,26^{\circ}$. **g)** $\|\vec{n}\| = \sqrt{1.01}$; orientation : $\approx 95.71^{\circ}$.

h) $\|\vec{o}\| = 6$; orientation : 270°. f) $\|\overrightarrow{m}\| = \sqrt{83,25}$; orientation : $\approx 279,46^{\circ}$. **d)** $\|\vec{s}\| = 2\sqrt{37}$; orientation : $\approx 99,46^{\circ}$.

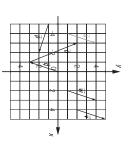
- i) $\|\vec{p}\| = 3\sqrt{2}$; orientation: 135°.
- a) Ces vecteurs sont colinéaires. **k)** $\|\vec{c}\| = 3$; orientation : 180°. j) $\|\vec{e}\| = \sqrt{10 \ 361}$; orientation : $\approx 349.24^{\circ}$ l) $\|\vec{h}\| = \sqrt{113}$; orientation : $\approx 221,19^{\circ}$.
- b) Ces vecteurs sont équipollents. c) Ces vecteurs sont opposés
- 7. a) (0, 1) 8. A et D.
- **9. a)** $\|\overline{BA}\| \approx 10,63$; orientation : $\approx 138,81^{\circ}$.
- **b)** $\|-\overline{CD}\| \approx 18.6$; orientation : $\approx 306,25^{\circ}$
- **b)** (-1, 0) **c)** $\left(-\frac{\sqrt{2}}{2}, -\frac{\sqrt{2}}{2}\right)$ ou $\left(-\sqrt{0.5}, -\sqrt{0.5}\right)$.
 - **d)** $\left(\frac{\sqrt{3}}{2}, 0, 5\right)$ ou $(\sqrt{0,75}, 0, 5)$. **e)** $\left(0,5, \frac{\sqrt{3}}{2}\right)$

Page 25

- Mise au point 4.1 (suite)
- 10. a) Plusieurs réponses possibles. Exemple .



- **b)** $\|\vec{m}\| = \sqrt{13}$; orientation : $\approx 303,69^\circ$ $\|\overrightarrow{w}\| = 2\sqrt{13}$; orientation: $\approx 303,69^\circ$ $\|\vec{v}\| = 2\sqrt{13}$; orientation : $\approx 123,69^{\circ}$ $\|\vec{t}\| = 2\sqrt{17}$; orientation : $\approx 284,04^{\circ}$ $\|\vec{u}\| = \sqrt{13}$; orientation : $\approx 123,69^\circ$. $\|\vec{s}\| = \sqrt{17}$; orientation : $\approx 104,04^{\circ}$. $\|\vec{n}\| = 6\sqrt{5}$; orientation : $\approx 116,57^\circ$.
- c) 1) Le vecteur m est opposé au vecteur u et le vecteur v est opposé au vecteur w.
- 2) Les vecteurs m, u, v et w sont colinéaires, et les vecteurs t et s sont colinéaires.
- d) 1) Plusieurs réponses possibles. Exemple : Les composantes de deux vecteurs opposés sont de signe contraire. 2) Plusieurs réponses possibles. Exemple : Le rapport composante horizontale de deux vecteurs colinéaires est identique.
- 11. a) 1) $\frac{D}{a}$
- b) La pente d'une droite correspond à l'opposé de l'inverse de la pente de l'autre droite. Le produit des deux pentes est donc -1. 2) $\frac{a}{b}$
- c) Les deux vecteurs sont orthogonaux, car ils sont supportés par des droites dont le produit des pentes est -1, ce qui indique que ces droites sont perpendiculaires.
- Plusieurs réponses possibles. Exemple :



- VISION 4 Ressources supplémentaires Corrigé du manuel SN Vol. 2
- © 2011, Les Éditions CEC inc. Reproduction autorisée

- **13. a)** Soit (x, 2x), où $x \in \mathbb{N}$, les composantes de ce vecteur. Son orientation est de $\arctan \frac{2x}{x} = \arctan 2$, soit $\approx 63,43^\circ$.
- **b)** Sa norme est $\sqrt{(2x)^2 + x^2} = \sqrt{4x^2 + x^2} = \sqrt{5x^2} = \sqrt{5}x$.

Comme x est un nombre naturel, $\sqrt{5}x$ est un multiple de $\sqrt{5}$.

c) La composante horizontale vaut le double de l'opposé de la composante verticale

Mise au point 4.1 (suite)

b) ≈ 35,81 **c)** $\approx 0,71$

d) $\approx 0,16$

b) \approx (6,43, 13,18)

16. a) $\|\vec{v}\| = \sqrt{4^2 + 6^2} = \sqrt{52}$, soit $\approx 7,21$

15. a) \approx (-7,41, 12,34) **14. a)** \approx 7,82

Orientation de \vec{v} : arctan $\frac{6}{4} \approx 56,31^{\circ}$ Mesure de l'angle formé par \vec{v} et la droite : 56,31° - 30° \approx 26,31°

Norme du projeté de \vec{v} : 7,21cos 26,13° \approx 6,46

Composante verticale du projeté de \vec{v} : 6,46 sin 30° \approx 3,23 Composante horizontale du projeté de \vec{v} : 6,46 cos 30° \approx 5,6

Les composantes du vecteur obtenu par la projection de \vec{v} sur cette droite sont \approx (5,6, 3,23).

c) (0,8, -0,4)

Mise au point 4.1 (suite)

17. a) 1) Norme: ≈ 14,6 millions de kilomètres; orientation: ≈ 249,95°

Page 27

- 2) Norme : ≈ 14.6 millions de kilomètres; orientation : $\approx 313,06^{\circ}$
- 3) Norme : \approx 14,6 millions de kilomètres ; orientation : \approx 55,01°. 4) Norme : \approx 14,6 millions de kilomètres ; orientation : \approx 153,08°.
- **b)** Les coordonnées sont (\approx -12,64, \approx -7,3).
- **18. Situation** ① : La force a une norme de 10^{30} N et une orientation d'environ 30.96° **Situation** ② : La force a une norme de 10^{32} et une orientation d'environ 153.43° .

Mise au point 4.1 (suite)

Page 28

- **19.** a) $B(\approx 5,1,\approx 78,69^\circ)$; $D(\approx 4,12, \approx 165,96^{\circ});$ $E(\approx 3,61, \approx 213,69^{\circ}); F(\approx 5,66,315^{\circ})$
- **b)** H(≈ -2,46, ≈ 1,72)
- 20. a) La force est environ de 139,51 N.
- **b**) Il faut placer les mains à 20 cm du sol de façon à ce que la corde soit parfaitement horizontale. Ainsi, $\theta=0$ et la projection de la force exercée est $\tilde{f} \times \cos 0^\circ$, soit la totalité de la force exercée.

4.2

Les opérations sur les vecteurs

Page 29

Problème

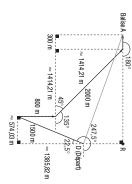
horizontaux et verticaux ont été déduites par trigonométrie. dans les instructions ainsi que le vecteur déplacement qui relie directement le point de départ à la balise A. Les mesures des segments Le schéma ci-contre représente les déplacements successifs définis

Page 26

Ce schéma permet également de déduire que

- m $\overline{\rm DR} \approx 1414,21 + 800 1385,82$, soit $\approx 828,39$ m.
- m RA $\approx 300 + 1414,21 + 574,03$, soit $\approx 2288,24$ m.
- m $\overline{DA} \approx \sqrt{2288,24^2 + 828,39^2}$, soit $\approx 2433,57$ m.
- m \angle ADR \approx arc tan $\frac{2288,24}{828,39}$, soit \approx 70,1°.

un angle d'environ 289,9°, par rapport au nord. Amélie doit parcourir environ 2433 m et donner à sa boussole



Activité 1

Page 30

a. 1) Puisque les déplacements sont successifs, ils ne peuvent pas commencer au même point

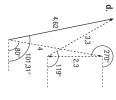
2) Le deuxième déplacement commence à l'endroit où le premier déplacement s'est terminé, ce qui correspond bien à la définition de deux déplacements successifs.

3) A l'aide de la loi des sinus, on détermine que l'angle FDE mesure environ 13,67°. On en déduit que l'orientation

2) À l'aide de la loi des cosinus, on détermine que $\|\overline{\rm DE}\| \approx 5,98$ dam.

- **c.** Cela revient à démontrer que $\overrightarrow{GI} = \overrightarrow{DE}$. du vecteur DE est environ de 43,67°

AFFIRMATION	JUSTIFICATION
m \angle GHI = 30° + (180° - 75°) = 135° m \angle GHI = m \angle DFE	
Δ GHI \cong Δ DEF	Par CAC.
$\ \overrightarrow{DE}\ = \ \overrightarrow{GI}\ $	Les côtés homologues de deux triangles isométriques sont isométriques
m ∠IGH = arc sin $\frac{4.4 \sin 135^{\circ}}{\ \vec{G}\ }$, soit ≈ 31,33°.	Par la loi des sinus.
Orientation de $\overrightarrow{Gl} \approx 75^{\circ} - 31,33^{\circ}$, soit $\approx 43,67^{\circ}$.	
$\overrightarrow{GI} = \overrightarrow{DE}$	Deux vecteurs qui ont la même norme et la même orientation sont équipollents.



7

00

VISION 4 ■ Ressources supplémentaires • Corrigé du manuel SN – Vol. 2

Activité 2

a. La composante horizontale de \vec{r} vaut 3,2 cos 22°, soit environ 2,97 kN. La composante verticale de \vec{r} vaut 3,2 sin 22°, soit environ 1,2 kN.

b. 1) 0 + -0.5 + -0.9 + 4.4 = 3 kN

2) La somme des composantes horizontales des vecteurs ρ , n, t et f est approximativement égale à la composante horizontale du vecteur r.

c. 1) -2,1+1,4+0,3+2,2=1,2 kN

2) La somme des composantes verticales des vecteurs p, n, t et f est approximativement égale à la composante verticale du vecteur $\it r.$

d. Les composantes d'un vecteur résultant de l'addition de plusieurs vecteurs correspondent à la somme des composantes de chacun des vecteurs additionnés.

Activité 3

<u>a</u>

a. 1) i) $\vec{p} + \vec{p}$ ii) $\vec{p} + \vec{p} + \vec{p}$ 2) i) $2\vec{p}$ ii) $3\vec{p}$ ii) $3\vec{p}$ ii) $3\vec{p}$ 3) i) La norme est 1400 kg \times m/s et l'orientation est de 30°. ii) La norme est 2100 kg \times m/s et l'orientation est de 30°.

b. 1) L'orientation du vecteur obtenu est identique à l'orientation du vecteur de départ.

2) La norme du vecteur obtenu correspond à la norme du vecteur de départ multipliée par le scalaire.

2) \approx (1212,44, 700)

3) \approx (1818,65, 1050)

c. 1) \approx (606,22, 350)

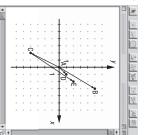
d. Cette conjecture est vraie, car:
(2 × 606,22, 2 × 350) = (1212,44, 700), ce qui correspond pratiquement au résultat obtenu à la question c 2);
(3 × 606,22, 3 × 350) = (1818,66, 1050), ce qui correspond pratiquement au résultat obtenu à la question c 3).

b. 1) (5, -2) **a. 1)** (4, 2) Technomath **2)** (-3, 3) **2)** (-3, 3) **3)** (2, 1) **3)** (1, 5) Page 33

c. Les composantes d'un vecteur résultant de la somme de deux autres vecteurs correspondent à la somme des composantes de ces deux vecteurs.

d. $\overrightarrow{AB} = (6, -1)$, $\overrightarrow{AC} = (1, 7)$ et $\overrightarrow{AD} = (7, 6)$. Or, puisque (6 + 1, -1 + 7) = (7, 6), la conjecture s'applique à ces vecteurs

ਣ



VISION 4 ■ Ressources supplémentaires • Corrigé du manuel SN – Vol. 2 9

2. a) AC

Mise au point 4.2 (suite) 2. a) \overrightarrow{AC} b) \overrightarrow{BD}

c) AB

d) AA ou 0.

e) AE

f) AB

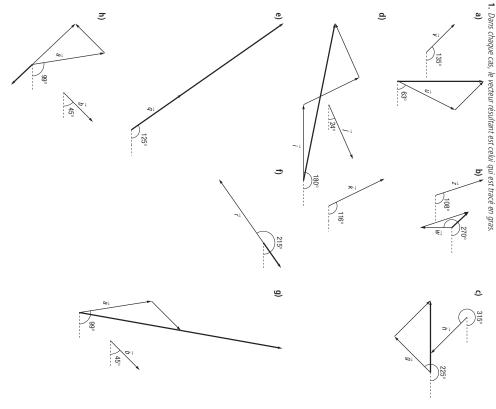
Page 38

3. a) Norme : ≈ 3,12; orientation : ≈ 108,09°.

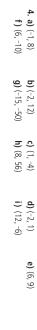
c) Norme : \approx 22,82; orientation : \approx 294,53°

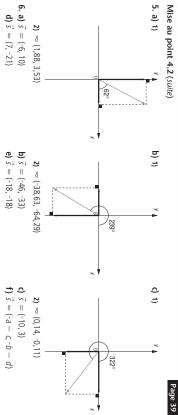
Mise au point 4.2

Page 31



d) Norme : \approx 31,82; orientation : \approx 72,32°. **b)** Norme : ≈ 5,07; orientation : 78°.





- 7. a) ① Les segments AC et BD sont des côtés opposés d'un parallélogramme et sont, par conséquent, parallèles et isométriques. Les vecteurs AC et BD ont donc la même norme, la même orientation et sont équipollents.
- ② C'est une application directe de la relation de Chasles.
 ③ Dans l'égalité AB + B, D = AD, on a remplacé BD par AC qui lui est équipollent. Or, remplacer un terme par un terme équivalent conserve l'égalité.

b)
$$\overrightarrow{AB} - \overrightarrow{AC} = \overrightarrow{AB} - \overrightarrow{AC}$$

$$= \overrightarrow{AB} + \overrightarrow{CA}$$

$$= \overrightarrow{CA} + \overrightarrow{AB}$$

$$= \overrightarrow{CB}$$

$$= \overrightarrow{CB}$$

$$= \overrightarrow{CB}$$

$$= \overrightarrow{CB} + \overrightarrow{EF} + \overrightarrow{EG}$$

$$= \overrightarrow{F} + \overrightarrow{EG}$$

$$= \overrightarrow{F} - \overrightarrow{BG}$$

c) 1)

Mise au point 4.2 (suite)

b)
$$\overrightarrow{AB} - \overrightarrow{AD}$$

c) $\overrightarrow{EB} + \overrightarrow{BC} + \overrightarrow{CA}$
d) Plusieurs réponses p

9. a) CA

d) Plusieurs réponses possibles. Exemple :
$$\overrightarrow{EB} + \overrightarrow{BC} + \overrightarrow{CA} + \overrightarrow{AE}$$

c) -BD

d) BD

10. a)
$$\overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{V} = \overrightarrow{AB} + \overrightarrow{BC} - \overrightarrow{AC}$$

$$= \overrightarrow{AC} - \overrightarrow{AC}$$

$$= \overrightarrow{AC} + \overrightarrow{CA}$$

$$= \overrightarrow{AC} + \overrightarrow{CA}$$

11

12

b) 1)
$$\vec{v} = \overrightarrow{AC}$$

2)
$$\vec{v} = \overrightarrow{AC}$$

3)
$$\vec{V} = \vec{DB}$$

11. a)
$$\vec{v} = (6, 4), \vec{p} = (3, -12)$$
 et $t = (-0, 4, -1)$.

b) 1)
$$\frac{2}{3}$$
 2) $\frac{2}{3}$ **3)** -4

- **3)** -4 **4)** -4 **5)** 2,5 **6)** 2,5
- c) 1) Deux vecteurs dont l'un correspond au produit de l'autre par un scalaire sont supportés par des droites de même 2) Les composantes de \vec{v} sont (ka,kb). La pente de la droite qui supporte \vec{u} est de $\frac{\vec{v}}{k}$. La pente de la droite qui supporte \vec{v} est de $\frac{\vec{v}}{ka}$. Les pentes sont les mêmes, ce qui confirme la conjecture. pente, donc parallèles. Les deux vecteurs ont donc nécessairement la même direction.

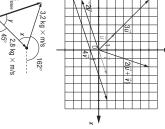
Mise au point 4.2 (suite)

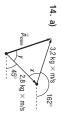
12. a)
$$\vec{v} = 4\vec{u}$$

b)
$$\vec{v} = \frac{5}{21} \vec{u}$$

c)
$$\vec{v} = -2.5 \vec{u}$$

Page 41





$$x = 180^{\circ} - 162^{\circ} + 45 = 63^{\circ}$$

$$\|\vec{p}_{\text{trade}}\| = \sqrt{2.8 + 3.2^2 - 2(2.8)(3,2)\cos 63^\circ}$$
, soft $\approx 3.15 \text{ kg} \times \text{m/s}$.
 $y \approx \arcsin \frac{3.2\sin 63^\circ}{3.15} \approx 64.71^\circ \text{ et l'orientation de } \vec{p}_{\text{trade}} \approx 109.71^\circ$.

Les composantés de
$$\vec{p}_{\text{totale}}$$
 sont donc environ (-1,06, 2,97).
b) On a $\vec{p}_{A \text{ finale}} + \vec{p}_{B \text{ finale}} = \vec{p}_{\text{totale}}, \vec{p}_{A \text{ finale}} \approx (2,98,-2,01) \text{ et } \vec{p}_{\text{totale}} \approx (-1,06,2,97).$

$$(2,98, -2,01) + \vec{p}_{\rm B finale} \approx (-1,06, 2,97)$$

Page 40

$$finale \approx (-1,06, 2,97) - (2,98, -2,01) \approx (-4,04, 4,98)$$

On en déduit que :
$$(2,98,-2,01)+\rho_{B\, finale} \approx (-1,06,2,97)$$

$$\bar{\rho}_{B\, finale} \approx (-1,06,2,97)-(2,98,-2,01) \approx (-4,04,4,98)$$
 Les composantes du vecteur qui représente la quantité de mouvement de l'objet B après la collision sont environ (-4,05,4,98).

c) La norme de $\vec{V}_{B \text{ finale}}$ est environ 2,14 m/s.

L'orientation de $\overrightarrow{P_B}_{\text{finale}}$ est environ de 180° — arc $\tan\frac{4.98}{4.05}$ soit environ 129,1°. Puisque $\overrightarrow{p}_{\text{B finale}} = m_{\overline{b}} \overrightarrow{V}_{\text{B finale}} = 3 \overrightarrow{J}_{\text{B finale}}$ on en déduit que l'orientation de $\overrightarrow{V}_{\text{B finale}}$ est identique à celle de $\overrightarrow{P}_{\text{B finale}}$ soit environ 129,1°.

Mise au point 4.2 (suite)

2)
$$\| \overline{OA} \| = 1.8 \text{ m}$$
 3) Le barycentre est situé à 1,8 m du point A ou à 1,2 m du point B.

VISION 4 ■ Ressources supplémentaires • Corrigé du manuel SN – Vol. 2

)
$$\|OA\| = \frac{m_2}{m_1 + m_2} \|AB\|$$

$$10 \text{ cm} = \frac{1}{1000 + 1} \|AB\|$$

$$||AB|| = 10\,010\,\text{cm}\,\text{ou}\,100,1\,\text{m}.$$

Ce levier doit avoir une longueur de 100,1 m.

16. a) On a $\bar{f}_1 \approx$ (-120,36, 159,73) et $\bar{f}_2 \approx$ (133,65, 68,1). On en déduit que :

 $+\vec{f}_{2} \approx (13,29,227,83)$

$$\vec{f}_1 + \vec{f}_2 \approx (-120,36, 159,73) + (133,65, 68,1)$$

 $\vec{f}_1 + \vec{f}_2 \approx (13.29, 277.83)$

Les composantes de la force qui correspond à la somme de \vec{f}_1 et de \vec{f}_2 sont environ (13,29, 227,83).

- b) Non, car seules les composantes horizontales des forces engendrent un déplacement horizontal du bloc de béton. Le participant qui exerce une force totale plus faible que l'autre, mais dont l'orientation est plus proche de l'horizontale, peut gagner. C'est d'ailleurs le cas dans la situation illustrée dans le problème.
- c) Le participant désavantagé est celui de gauche, car la composante horizontale de la force résultante est la plus petite. Pour que celui-ci puisse gagner cette partie, il faut que :

$$\|\vec{f}_1\| \cos 53^\circ > 150 \cos 27^\circ$$

 $\|\vec{f}_1\| \sim 150 \cos 27^\circ$

$$\|\vec{f}_1\| > \frac{150\cos 27^\circ}{\cos 53^\circ}$$

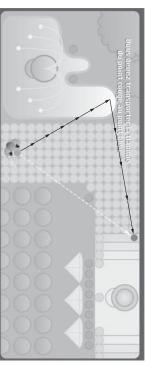
$$\left\Vert \overrightarrow{f}_{1}\right\Vert >pprox 222,08\ \mathrm{N}$$

Le participant désavantagé doit exercer une force d'au moins 222,08 N environ.

Combinaison linéaire et produit scalaire

• En mettant bout à bout plusieurs fois le vecteur associé à la touche 📵 et plusieurs fois le vecteur associé à la touche (E), on obtient deux chaînes de vecteurs.

 En plaçant ces chaînes de vecteurs de façon à ce que l'origine d'une chaîne corresponde au point de départ et que l'extrémité de l'autre chaîne corresponde au point d'arrivée, on peut déduire le nombre de fois qu'il faut appuyer sur chaque touche.



Karim doit appuyer 6 fois sur la touche @ et 4 fois sur la touche .

Activité 1

- a. 1) Ces vecteurs sont colinéaires.
- **b. 1)** m \angle ACB = 45° + (180° 117°) = 108° **3)** $\|\overrightarrow{AC}\| = \frac{14.87 \sin 47°}{\sin 108°}$, soit ≈ 11.43 cm.
- © 2011, Les Éditions CEC inc. Reproduction autorisée

Page 44

- 2) m \angle ABC = 180° (70° 45°) 108° = 47° 4) $\|\overrightarrow{CB}\| = \frac{14.87 \sin 25°}{\sin 108°}$, soit $\approx 6,61$ cm. 2) Ces vecteurs sont colinéaires.
- VISION 4 Ressources supplémentaires Corrigé du manuel SN Vol. 2

13

- 2) $\overrightarrow{CB} \approx 3\overrightarrow{V}$
- c. 1) $\overrightarrow{AC} \approx 4\overrightarrow{u}$ **d.** $\overrightarrow{AB} \approx 4\vec{u} + 3\vec{v}$
- e. 1) $29 = 2k_1 3k_2$ $-4 = 3k_1 + 5k_2$
- **2)** $k_1 = 7$ et $k_2 = -5$.
- 3) $\overrightarrow{EF} = 7\overrightarrow{s} 5\overrightarrow{t}$

Activité 2

a. 1) ≈ 281,91 N

2) \approx 198,51 N

2) ≈ 1985,09 J

- **b. 1)** $\approx 1409,54 \text{ J}$
- c. $W = \|\vec{f}\| \times \|\vec{d}\| \times \cos \theta$
- **2)** $\approx 6.21 \text{ m}$ 3) $\approx 8,49 \text{ m}$

4) 12 m

d. 1) 6 m

1. a) \approx 18,53 Mise au point 4.3 **f)** \approx -6,02 **g)** 0 **b)** \approx 2,91 **c)** ≈ 2,96 **h)** 15 **d)** \approx -1,98 **i)** -5,4

e) ≈ 9.27

- **2. a)** $\vec{w} = 2\vec{u} + 3\vec{v}$ **b)** $\vec{s} = -1\vec{u} + 2\vec{v}$
- **e)** $\vec{p} = -1\vec{u} + 3\vec{v}$
- **f)** $\vec{q} = \frac{2}{3}\vec{u} \frac{14}{3}\vec{v}$ **c)** 1,7 **d)** 313
 - **g)** $\vec{m} = \frac{107}{150}\vec{u} + \frac{19}{150}\vec{v}$ c) $\vec{t} = \frac{2}{3}\vec{u} - \frac{65}{3}\vec{v}$
 - **h)** $\vec{n} = 0\vec{u} + 0\vec{v}$ **d)** $\vec{r} = -\frac{3}{5}\vec{u} + \frac{59}{5}\vec{v}$
- **e)** -4,5
- **f)** 100

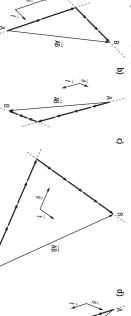
Page 49

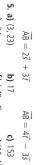
Mise au point 4.3 (suite)

b) 41

Page 43

4. a)





 $\overrightarrow{AB} = 5\overrightarrow{s} + 5\overrightarrow{t}$

 $\overrightarrow{AB} = 8\overrightarrow{t} + 3\overrightarrow{s}$

- **f)** (-40, -9) **c)** 153 **g)** (15, 1) **d)** (6, 8) **h)** 119
- **6.** Puisque $\vec{u} \cdot \vec{v} = ac + bd$ et $\vec{u} \cdot \vec{v} = ||\vec{u}|| \times ||\vec{v}|| \times \cos\theta$, on a :
- $ac + bd = \|\vec{u}\| \times \|\vec{v}\| \times \cos \theta$
- $\cos \theta = \frac{1}{\sqrt{(a^2 + b^2)(c^2 + d^2)}}$ $= \theta \cos \theta$ $\cos \theta = \frac{ac + bd}{\|\vec{v}\| \times \|\vec{v}\|}$ $(\sqrt{a^2+b^2})(\sqrt{c^2+d^2})$ c + bd
- $\theta = \arccos \frac{ac + bd}{\sqrt{(a^2 + b^2)(c^2 + d^2)}}$
- 14 VISION 4 ■ Ressources supplémentaires • Corrigé du manuel SN – Vol. 2
- © 2011, Les Éditions CEC inc. Reproduction autorisée

Mise au point 4.3 (suite)

7. a) 1) ≈ 5.54 **2)** ≈ -7,88

3) $\approx -7,46$

4) 0

5) ≈ -3.94

6) (

b) Le produit scalaire de deux vecteurs qui forment un angle obtus est négatif.

d) 1) Plusieurs réponses possibles. Exemple : (6, -4) 3) Plusieurs réponses possibles. Exemple : (8, -30) 2) Plusieurs réponses possibles. Exemple : (2, 5)

8. a) 1) Plusieurs réponses possibles. Exemple : $\vec{u}=(2,4)$ **2)** Plusieurs réponses possibles. Exemple : $\vec{v}=(2,7)$ b) 1) Plusieurs réponses possibles, selon les vecteurs nommés en a). Exemple :

2) Plusieurs réponses possibles, selon les vecteurs nommés en a). Exemple : $\vec{u} \cdot \vec{v} = 2 \times 2 + 4 \times 7 = 32$ $|\vec{u}| \approx 4,47 \text{ et } |\vec{v}| \approx 7,28.$

c) Puisque $\vec{u}\cdot\vec{v}=32$ et $\vec{u}\cdot\vec{v}=\|\vec{u}\|\times\|\vec{v}\|\times\cos\theta$, on a :

 $\theta = \operatorname{arc} \cos \frac{\overrightarrow{u} \cdot \overrightarrow{v}}{\|\overrightarrow{u}\| \times \|\overrightarrow{v}\|} \approx \operatorname{arc} \cos \frac{32}{(4,47)(7,28)}, \operatorname{soit} \approx 10,47^{\circ}.$

La mesure de l'angle aigu formé par les droites d_1 et d_2 est environ de 10,47°

b) $k_1 \vec{u} \cdot k_2 \vec{v} = k_1(a, b) \cdot k_2(c, d)$

 $= k_1 k_2 (ac + bd)$ $= k_1 k_2 (\vec{u} \cdot \vec{v})$ $= k_1 k_2((a, b) \cdot (c, d))$ $= k_1 k_2 a c + k_1 k_2 b d$ $= k_1 a k_2 c + k_1 b k_2 d$ $= (k_1a, k_1b) \cdot (k_2c, k_2d)$ Mise au point 4.3 (suite)

9. a) $\vec{u} \cdot \vec{v} = (a, b) \cdot (c, d)$ = ac + bd= ca + db

 $= (c, d) \cdot (a, b)$ $= \overrightarrow{v} \cdot \overrightarrow{u}$

c) $\vec{u} \cdot (\vec{v} + \vec{w}) = (a, b) \cdot ((c, d) + (e, f))$ = $(a, b) \cdot (c + e, d + f)$ = ac + bd + ae + bf= a(c + e) + b(d + f)= ac + ae + bd + bf

d) $\vec{u} \cdot \vec{u} = (a, b) \cdot (a, b)$ = $a^2 + b^2$ \parallel $(\sqrt{a^2 + b^2})^2$

10. a) 2(1, 3) + 3(4, 2) + 4(4, 1) + 4(5, 3) + 1(3, 5)

 $= (a, b) \cdot (c, d) + (a, b) \cdot (e, f)$ = $\overrightarrow{u} \cdot \overrightarrow{v} + \overrightarrow{u} \cdot \overrightarrow{w}$

Importance du design d'une télécommande et de l'ergonomie

b) Le vecteur résultant est (53, 33).

Importance du design

c) Le design influence le plus le choix des consommateurs, puisque le vecteur a une composante horizontale supérieure

d) Le vecteur serait orienté à 45°.

© 2011, Les Éditions CEC inc. • Reproduction autorisée

VISION 4 ■ Ressources supplémentaires • Corrigé du manuel SN – Vol. 2 15

Mise au point 4.3 (suite)

Page 50

b) $\overrightarrow{AB} \approx 0.59\vec{s} + 0.94\vec{t}$

11. a) AB $\approx 2.97t - 2.89\vec{s}$

12. Si $\vec{u}=(a,b)$ et $\vec{v}=(c,d)$, la pente de la droite qui supporte \vec{u} est $m_1=\frac{b}{a}$ et la pente de celle qui supporte \vec{v} est $m_2 =$ $\frac{\sigma}{c}$. De plus, \vec{u} et \vec{v} sont orthogonaux si $\vec{u} \cdot \vec{v} = 0$. Ainsi :

$$\vec{u} \cdot \vec{v} = 0$$

$$(a, b) \cdot (c, d) = 0$$

$$ac + bd = 0$$

En divisant chaque membre de l'égalité par bc, on obtient ac = -bd

$$\frac{a}{b} = \frac{-d}{c} \Rightarrow \frac{a}{b} = \frac{1}{-\frac{c}{d}} \Rightarrow m_1 = -\frac{1}{m_2}$$

13. a) 1) \approx 1223,52 J **2)** \approx 281,58 J **3)** ≈ 1151,88 J **4)** ≈ 2656,98 J

b) SI les trois déplacements correspondent respectivement aux vecteurs
$$\vec{d_{i}}$$
, $\vec{d_{i}}$ et $\vec{d_{j}}$, la somme des travaux W_{total} peut s'exprimer comme suit :

$$W_{\text{total}} = W_1 + W_2 + W_3$$

$$= \vec{f} \cdot \vec{q_1} + \vec{f} \cdot \vec{q_2} + \vec{f} \cdot \vec{d_3}$$

$$= \vec{f} \cdot (\vec{d_1} + \vec{d_2} + \vec{d_3})$$

$$= \vec{f} \cdot AB$$

14. a) Plusieurs réponses possibles. Exemple : Mise au point 4.3 (suite)

Le vecteur (-5, 3) est orthogonal à $\vec{v}=(3,5)$. Il faut donc résoudre le système suivant

$$3k_1 - 2k_2 = -5$$

$$5k_1 + 3k_2 = 3$$

On obtient $k_1=\frac{9}{19}$ et $k_2=\frac{34}{19}$, et la combinaison linéaire recherchée est $-\frac{9}{19}\vec{v}+\frac{34}{19}\vec{w}$

Le vecteur (3, 2) est orthogonal à $\overline{W} = (-2, 3)$. Il faut donc résoudre le système suivant.

$$3k_1 - 2k_2 = 3$$

$$5k_1 + 3k_2 = 2$$

On obtient $k_1=\frac{13}{19}$ et $k_2=-\frac{9}{19}$, et la combinaison linéaire recherchée est $\frac{13}{19}\vec{v}-\frac{9}{19}\vec{w}$

15. a) Si chaque ouvrier qui se trouve au point A engendre une force $\vec{f_1}$ et chaque ouvrier qui se trouve au point B, une force $\vec{f_2}$, \approx (-648,83, 918,96). on a $f_1 \approx$ (-153,21, 128,56) et $f_2 \approx$ (58,61, 138,08). La force résultante est donc $f_1 = 5f_1 + 2f_2$, soit

On en déduit que :

•
$$\|\vec{f_r}\| \approx 1124,91 \text{ N}$$

• \vec{t}_i sera orienté selon un angle d'environ 180° — arc $\tan \frac{918,96}{648,83}$, soit d'environ 125°.

b) On a $\vec{f}_1 \approx$ (-809,15, 2002,72). Il faut donc déterminer la combinaison linéaire de \vec{f}_1 et de \vec{f}_2 qui permet d'engendrer \vec{f}_1 , c'est-à-dire résoudre le système d'équations suivant, où k_1 et k_2 correspondent aux nombres d'ouvriers recherchés :

$$-153,21k_1 + 58,61k_2 = -809,15$$

 $128,56k_1 + 138,08k_2 = 2002,72$

On obtient
$$k_1 \approx 8$$
 et $k_2 \approx 7$

On obtient $k_1 \approx 8$ et $k_2 \approx 7$.

Huit ouvriers doivent tirer sur la corde au point A et sept ouvriers doivent tirer sur la corde au point B.

16

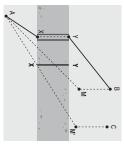
Chronique du passé

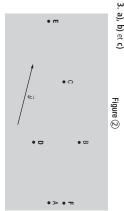
1. (A, X) + (X, Y) + (Y, B) = (A, X) + (X, M) + (M, B) (A, X) + (X, Y) + (Y, B) = (A, X) + (X, M) + (X, Y) (A, X) + (Y, B) = (A, X) + (X, M) = (A, M)

et on en déduit que (Y, B) = (X, M).

Puisque la ligne droite constitue le trajet le plus court entre les points A et M, le trajet (A, X) + (X, M) est minimal si les points A, X et M sont alignés. Or, ce trajet est de la même longueur que (A, X) + (Y, B), car (X, M) = (Y, B).

Figure ①





Le monde du travail

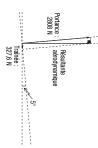
1. a) La traînée du planeur est
$$C_1 \times r \times S \times \frac{\|\vec{v}\|^2}{2} = 0.07 \times 1.3 \times 8 \times \frac{30^2}{2} = 327.6 \text{ N}.$$

Page 57

b) La portance du planeur est
$$C_p \times r \times S \times \frac{\|\vec{y}\|^2}{2} = 0, 6 \times 1, 3 \times 8 \times \frac{30^2}{2} = 2808 \text{ N}.$$

2. a) La norme de la résultante aérodynamique vaut $\sqrt{327}$,6 $^2+2808^{\overline{2}}$, soit environ 2827,05 N.

L'orientation de la résultante aérodynamique est de $95^\circ-$ arc tan $\frac{327.6}{2808}$, soit environ 88.35°



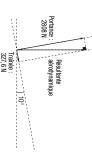
© 2011, Les Éditions CEC inc. • Reproduction autorisée

VISION 4 ■ Ressources supplémentaires • Corrigé du manuel SN – Vol. 2

17

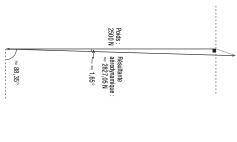
18

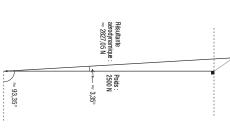
b) La norme de la résultante aérodynamique vaut $\sqrt{327,6^2 + 2808^2}$, soit environ 2827,05 N. L'orientation de la résultante aérodynamique est de 100° – arc tan $\frac{327,6}{2808}$, soit environ 93,35°



Page 55

3. a) La norme du vecteur associé à la somme L'orientation de ce vecteur correspond à un angle de 90° — arc $\sin \frac{2827,05 \sin 1,65^{\circ}}{335,93}$, soit environ 75,94°. du poids et de la résultante aérodynamique vaut soit environ 335,93 N. $\sqrt{2827,05^2 + 2500^2 - 2(2827,05)(2500)\cos 1,65^\circ}$ 335,93





Vue d'ensemble

1. a)
$$\vec{V} \approx (-13,26, -8,95)$$

d) $\vec{V} \approx (-0,65, -1,89)$

b) $\vec{v} \approx (-83,5, 217,52)$ **e)** $\vec{v} \approx (46,76, 14,3)$

2. a)
$$\|\vec{v}\| = 5\sqrt{13}$$
 ou $\approx 18,03$; orientation : $\approx 56,31^{\circ}$.

$$||\vec{u}|| = 12\sqrt{2}$$
 ou ≈ 16.97 ; orientation : 45

c)
$$\|\vec{u}\| = 12\sqrt{2}$$
 ou $\approx 16,97$; orientation : 45°.

e)
$$\|\vec{m}\| = \sqrt{2}$$
 ou \approx 1,41; orientation : 135°
a) \overrightarrow{AB} b) \overrightarrow{AC} d) $\overrightarrow{0}$ e) $\overrightarrow{0}$

3. a)
$$\overrightarrow{AB}$$
 d) $\overrightarrow{0}$

c)
$$\vec{V} \approx (0.53, -0.38)$$

Page 58

f)
$$\vec{V} \approx (559, 19, 829, 04)$$

b)
$$\|\overrightarrow{w}\| = 3\sqrt{10}$$
 ou $\approx 9,49$; orientation : $\approx 251,57^{\circ}$.

d)
$$||\vec{t}|| \approx 107,65$$
; orientation : $\approx 164,43^{\circ}$.

f)
$$\|\vec{n}\| = \frac{\sqrt{13}}{6}$$
 ou ≈ 0.6 ; orientation : $\approx 303,69^{\circ}$.

VISION 4
Ressources supplémentaires • Corrigé du manuel SN – Vol. 2 © 2011, Les Éditions CEC inc. • Reproduction autorisée

4. a)
$$\vec{v} = \frac{54}{139} \vec{u}$$

d) $\vec{v} = -10\vec{u}$

b)
$$\vec{v} = \frac{331}{184}\vec{u}$$

e) $\vec{v} = 0.75\vec{u}$

c)
$$\vec{v} = \frac{12\vec{u}}{7}\vec{u}$$

f) $\vec{v} = \left(\frac{1}{m+n}\right)\vec{u}$

Vue d'ensemble (suite)

c) $\|\vec{g} - \vec{h}\| \approx 15,23$; orientation : $\approx 66,8^{\circ}$.

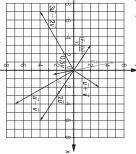
5. a)
$$\approx 2,19$$
 b) $\approx 10,9$
6. a) $\|\vec{u} + \vec{v}\| \approx 5,37$; orientation : $\approx 52,41^{\circ}$.

2)
$$\approx 16,67$$
 d) $\approx 212,78$
3) $||\vec{w} - \vec{z}|| \approx 8,59$; orientation : $\approx 254,51^{\circ}$.

b)
$$\|\vec{W} - \vec{z}\| \approx 8.59$$
; orientation : $\approx 254,51^{\circ}$.
d) $\|\vec{i} + \vec{k} - \vec{j}\| \approx 21.4$; orientation : $\approx 127,41^{\circ}$

Page 60

Vue d'ensemble (suite)



8. a)
$$\approx -15,37$$
 b) $\approx 3,6$

b)
$$\approx 3,64$$
 c) $\approx 27,88$

- 9. a) L'orientation du vecteur recherché est de 145° ou de 325°.
- Ses composantes sont donc (1 cos 145°, 1 sin 145°), soit \approx (-0,82, 0,57), ou (1 cos 325°, 1 sin 325°), soit (0,82, -0,57)
- **b)** L'orientation du vecteur recherché est de 235°. Ses composantes sont donc (6 cos 235°, 6 sin 235°), soit \approx (-3,44, -4,91)
- c) On sait que $\vec{u} \cdot \vec{CD} = ||\vec{u}|| \times ||\vec{CD}|| \times \cos \theta = 15$. On a donc :
- $15 = \|\vec{u}\| \times 4.6 \times \cos 30^{\circ} \text{ et } \|\vec{u}\| \approx 3.77.$

Vue d'ensemble (suite)

L'orientation de \vec{u} est de 9° ou de 309°. Ses composantes sont donc \approx (3,77 cos 309°, 3,77 sin 309°), soit \approx (3,72, 0,59), ou \approx (3,77 cos 309°, 3,77 sin 309°), soit \approx (2,37, -2,93).

9 **C**, **D** et **I**.

11. a)
$$AB = (0, 208)$$

 $\vec{s} = (32\cos 45^\circ, 32\sin 45^\circ) \Rightarrow \vec{s} \approx (22,63, 22,63)$
 $\vec{t} = (9\cos 112^\circ, 9\sin 112^\circ) \Rightarrow \vec{t} \approx (-3,37, 8,34)$

$$0 = 22,63k_1 - 3,57k_2$$

$$208 = 22,63k_1 + 8,34k_2$$
On an dádhitt gua $k \approx 3.64$ at $k \approx 3.64$ at

208 =
$$22,63k_1 + 8,34k_2$$

On en déduit que $k_1 \approx 2,64$ et

$$\overrightarrow{AB} \approx 2,64\overrightarrow{s} + 17,75\overrightarrow{t}$$

2°)
$$\Rightarrow \vec{t} \approx (-3,37,$$
 $\begin{cases} 2 \\ 2 \end{cases}$
 $\begin{cases} 2 \\ 2 \end{cases}$
 $\begin{cases} 64 \text{ et } k_2 \approx 17,75. \end{cases}$

On en déduit que
$$k_1 \approx 2,6$$

 $\overrightarrow{AB} \approx 2,64\overrightarrow{s} + 17,75\overrightarrow{t}$

b) $AB = (9 \cos 62^{\circ}, 9 \sin 62^{\circ}) \Rightarrow AB \approx (4,23, 7,95)$

d)

Page 61

 $\overline{s} = (3\cos 50^{\circ}, 3\sin 50^{\circ}) \Rightarrow \overline{s} \approx (1,93, 2,3)$

 $\vec{t} = (2\cos 72^\circ, 9\sin 72^\circ) \Rightarrow \vec{t} \approx (0,62, 1,9)$

0, 208)
2 cos45°, 32sin 45°) ⇒
$$\vec{s} \approx$$
 (22,

$$\vec{s} = (32\cos 45^\circ, 32\sin 45^\circ) \Rightarrow \vec{s} \approx (22,63, 22,63)$$

 $\vec{t} = (9\cos 112^\circ, 9\sin 112^\circ) \Rightarrow \vec{t} \approx (-3,37, 8,34)$

$$\vec{t} = (9\cos 112^{\circ}, 9\sin 112^{\circ})$$

Système d'équations :
 $0 = 22,63k_1 - 3,37k_2$

$$0 = 22,63k_1 - 3,37k_2$$

$$208 = 22,63k_1 + 8,34k_2$$
 On en déduit que $k_1 \approx 2,64$ et $k_2 \approx 17,71$

208 = 22,63
$$k_1$$
 + 8,34 k_2
On en déduit que $k_1 \approx 2,64$ et $k_2 \approx 17,75$.

c)
$$\overrightarrow{AB} = \frac{35}{12} \vec{s} + 7,55 \vec{t}$$

© 2011, Les Éditions CEC inc. • Reproduction autorisée

d)
$$\overrightarrow{AB} = -2\vec{s} + \frac{1}{3}\vec{t}$$

 $\overrightarrow{AB} \approx 1,39\overrightarrow{s} + 2,5\overrightarrow{t}$

On en déduit que $k_1 \approx 1,39$ et $k_2 \approx 2,5$.

 $4,23 = 1,93k_1 + 0,62k_2$ $7,95 = 2,3k_1 + 1,9k_2$

Système d'équations :

VISION 4 ■ Ressources supplémentaires • Corrigé du manuel SN – Vol. 2

19

20

12. a) ≈ 63,43° **b)** 90°

d) 0°

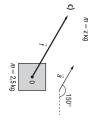
Page 62

Vue d'ensemble (suite)

Page 59

<u>5</u> 340° c) $\left(-1, -\frac{14}{6}\right)$

m = 0.5 kg



15. a) 1) La distance qui sépare le fragment A du fragment B est de

$$\sqrt{15,39^2 + 18,24^2 - 2(15,39)(18,24)\cos 62^{\circ}}$$
, soit environ 17,49 km

- 2) La distance qui sépare le fragment B du fragment C est de
- $\sqrt{13,41^2 + 18,24^2 2(13,41)(18,24)\cos 54^\circ}$, soit environ 15 km.

15,39 km

- 3) La distance qui sépare le fragment A du fragment C est de
- **b)** Si $\vec{V}_{\text{astéroïde}} = (a, b)$, on a : $\sqrt{13,41^2 + 15,39^2 - 2(13,41)(15,39)}$ cos 116°, soit environ 24,45 km

$$m_{
m A} \vec{v}_{
m A} + m_{
m B} \vec{v}_{
m B} + m_{
m C} \vec{v}_{
m C} = m_{
m anteroide} \vec{v}_{
m asteroide}$$

18,24 km

13,41 km

$$a = (0.5 \times 5, 13\cos 128^{\circ} + 0.3 \times 6,08\cos 190^{\circ} + 0.4 \times 4,47\cos 244^{\circ}) + 1.2,$$
 soit $\approx -3,47$.

$$a = (0.5 \times 5.13 \cos 128^{\circ} + 0.3 \times 6.08 \cos 190^{\circ} + 0.4 \times 4.47 \cos 244^{\circ}) + 1.2$$
, soit ≈ -3.47 .

$$b = (0.5 \times 5, 13 \sin 128^{\circ} + 0.3 \times 6, 08 \sin 190^{\circ} + 0.4 \times 4, 47 \sin 244^{\circ}) + 1, 2, \text{ soit} \approx 0.08$$

$$||\vec{V}_{\text{anteroigh}}|| \approx \sqrt{(-3,47)^{2} + 0.08^{2}} \approx 3.47 \text{ km/s}$$

Orientation de
$$\vec{V}_{\text{astéroide}} \approx 180^{\circ} - \arctan \frac{0.08}{3.47} \approx 178,66$$

La vitesse de l'astéroïde avant l'explosion était environ de 3,47 km/s, orientée à environ 178,66°

Page 63

Vue d'ensemble (suite)

- 16. a) À l'aide de la loi des sinus, on trouve que :
 la poussée du moteur de bâbord doit être d'environ 500,61 N;
 la poussée du moteur de tribord doit être d'environ 2000,91 N.

On en déduit que :

- l'hélice du moteur de bâbord tourne à une vitesse d'environ $1000 imes rac{500,61}{200}$ tours/min, soit environ 2503,05 tours/min;
- I'hélice du moteur de tribord tourne à une vitesse de $1000 \times \frac{2000.91}{300}$ tours/min, soit environ 6669,71 tours/min.
 - Poussée du moteur de bâbord noteur de tribord Poussée totale : 2500 N

b) À l'aide de la loi des sinus, on trouve que :

- la poussée du moteur de bâbord doit être d'environ 650,79 N;
- la poussée du moteur de tribord doit être d'environ 2601,19 N.

On en déduit que :

- I'hélice du moteur de bâbord tourne à une vitesse de $1000 \times \frac{650/79}{200}$ tours/min, soit environ 3253,96 tours/min;
- l'hélice du moteur de tribord tourne à une vitesse de 1000 × 2601,19 tours/min, soit environ 8670,63 tours/min.

17. a) Le vecteur résultant associé au trajet de l'aller est (16, 8). Le trajet de retour peut donc être représenté par le vecteur (-16, -8). Son orientation sera d'environ 180° + arc tan 0,5, soit environ 206,57°.

b) II aura à parcourir $\sqrt{16^2 + 8^2} \approx 17,89$ km.

1	_
18. a	ue c
) AFFIRMATION	Vue d'ensemble (suite)
JUSTIFICATION	

8. a)	AFFIRMATION	JUSTIFICATION
	$\overrightarrow{AB} = \overrightarrow{CB} - \overrightarrow{CA}$	
	$\overrightarrow{AB} = \overrightarrow{CB} + \overrightarrow{AC}$	En inversant l'origine et l'extrémité d'un vecteur, on obtient un vecteur qui lui est opposé.
	$\overrightarrow{AB} = \overrightarrow{AC} + \overrightarrow{CB}$	$\overrightarrow{AB} = \overrightarrow{AC} + \overrightarrow{CB}$ L'addition de vecteurs est commutative.
	$\overrightarrow{AB} = \overrightarrow{AB}$	Par la relation de Chasles.

b) 1) Les produits scalaires de deux paires identiques de vecteurs sont égaux.
2) Le produit scalaire de vecteurs est distributif. On a donn :
$$(CB - CA) \cdot (CB - CA) = \underbrace{(CB - CA)}_{CA} - \underbrace{(CB - CA)}_{CA} - \underbrace{(CB - CA)}_{CA}$$

$$\begin{split} &= \overline{GB} \cdot \overline{GB} - \overline{GB} \cdot \overline{CA} - \overline{CA} \cdot \overline{CB} + \overline{CA} \cdot \overline{CA} \\ &= \overline{GB} \cdot \overline{GB} + \overline{CA} \cdot \overline{CA} - 2\overline{CB} \cdot \overline{CA} \\ &= \overline{GB} \cdot \overline{CB} + \overline{CA} \cdot \overline{CA} - 2\overline{CB} \cdot \overline{CA} \\ \end{split}$$

19. Résoudre le système suivant :

$$k_1 a + k_2 c = ka$$

$$k_1 b + k_2 d = kb$$

 $\operatorname{si}\frac{ka-k_2c}{a} = \frac{kb-k_2d}{b} \operatorname{ou}\frac{ka-k_2c}{kb-k_2d} = \frac{a}{b}.$ En isolant k_1 dans chaque équation et en utilisant la méthode de comparaison, on établit que \vec{z} et \vec{v} sont colinéaires

D'après une des propriétés des proportions, cette égalité est vraie seulement si $\frac{k_c c}{k_b d} = \frac{a}{b}$, c'est-à-dire si $\frac{c}{d} = \frac{a}{b}$ Or, puisque \vec{v} et \vec{w} sont non colinéaires, cette proportion n'est pas vérifiée. Il faut donc, pour que la proportion

20. $\overrightarrow{AB} = (8, 2)$ et $\overrightarrow{BC} = k\overrightarrow{AB} = (8k, 2k)$. $\frac{k\partial - k_2c}{kb - k_2d} = \frac{\partial}{b}$ soit vraie, que $k_2 = 0$.

Or, BC = (x - 3, y - 4).

On en déduit que :

• x - 3 = 8k et y - 4 = 2k;

• $k = \frac{x-3}{8}$ et $k = \frac{y-4}{2}$;

• $\frac{x-3}{8} = \frac{y-4}{2} \Rightarrow y = 0.25x + 3.25.$

Il faut donc que y égale 3,25 unités de plus que le quart de x.

© 2011, Les Éditions CEC inc. • Reproduction autorisée

VISION 4 ■ Ressources supplémentaires • Corrigé du manuel SN – Vol. 2

21

Vue d'ensemble (suite)

21. a) L'angle compris entre les vecteurs (1, 2) et (2, 1) mesure arc $\cos\left(\frac{1\times2+2\times1}{\sqrt{5}\times\sqrt{5}}\right)$ soit $\approx 36.87^{\circ}$

b) Le produit scalaire de ces vecteurs est $4a^2$, et chacun de ces vecteurs a une norme de $\sqrt{5}|a|$. On a donc :

$$4a^2 = (\sqrt{5}|a|)(\sqrt{5}|a|)\cos\theta$$
$$4a^2 = (5a^2)\cos\theta$$

$$4a^{2} = (5a^{2})\cos\theta$$
$$4 = 5\cos\theta$$
$$\cos\theta = \frac{4}{5}$$

22. a) 1)
$$2 + 2i = (\sqrt{8}, 45^{\circ})$$

3)
$$6 - 5i \approx (\sqrt{61}, 320, 19^\circ)$$

b) 1) $(4, 35^\circ) \approx 3.28 + 2.29i$

b) 1)
$$(4,35^\circ) \approx 3,28 + 2,29i$$

3) $(\sqrt{2},225^\circ) = -1 - i$

2)
$$1 + 3i \approx (\sqrt{10}, 71, 56^{\circ})$$

4) $7 + 0i = (7, 0^{\circ})$

2)
$$(7, 123^{\circ}) \approx -3,81 + 5,87$$

4) $(12, 150^{\circ}) \approx -10,39 + 6$ i

Page 66

Page 64

1. Pour que le navire se rende au point P en 25 min,

la norme de la vitesse résultante doit être
$$\frac{\|\overline{OP}\|}{1500 \text{ s}} = \frac{12\,000\,\text{m}}{1500\,\text{s}}$$
 soit 8 m/s, et son orientation, de 121°.

soit 8 m/s, et son orientation, de 121°. Puisque \vec{n} est la vitesse qu'il faut ajouter à \vec{v} et à \vec{w} pour obtenir la vitesse résultante voulue, il est possible de représenter graphiquement cette situation

Vitesse résultante 8 m/s

On en déduit que :

$\ \vec{v} + \vec{w}\ = \sqrt{9^2 + 5^2 - 2(5)(9)\cos 140^{\circ}}$, soit $\approx 13,23 \text{ m/s}$	Par la loi des cosinus.
$m \angle COD \approx arc sin \frac{9 sin 140^{\circ}}{13.2} \approx 25,94^{\circ}$	Par la loi des sinus.
m ∠AOC ≈ 54° − 26° ≈ 28,06°	
$m \angle COP \approx 121^{\circ} - 28,06^{\circ} \approx 92,94^{\circ}$	
$\ \vec{n}\ = \sqrt{13,23^2 + 8^2 - 2(13,23)(8)\cos 92,94^{\circ}}$, soit $\approx 15,81$ m/s. Par la loi des cosinus.	Par la loi des cosinus.
$m \angle OCP \approx \arcsin \frac{8 \sin 92.94^{\circ}}{15.81} \approx 30,36^{\circ}$	Par la loi des sinus.
$\theta = 360^{\circ} - \text{m} \angle \text{OCP} - (180^{\circ} - \text{m} \angle \text{AOC})$	Les angles AOC et OCF sont supplémentaires.
$\theta \approx 360^{\circ} - 30{,}36^{\circ} - (180^{\circ} - 28{,}06^{\circ}) \approx 177{,}7^{\circ}$	

La pilote doit donner au navire une vitesse d'environ 15,81 m/s, orientée à environ 177,7°.

2. Puisque le vecteur (c, d) recherché est unitaire et orthogonal à (a, b), on peut poser les deux équations suivantes :

(1) $(a, b) \cdot (c, d) = 0$;

(2)
$$\sqrt{c^2 + d^2} = 1$$
 ou $c^2 + d^2 = 1$.

En isolant d dans l'équation ①, on obtient $d = -\frac{ac}{b}$.

Après avoir substitué cette expression à d dans l'équation 2, on peut effectuer la démarche suivante.

$$c^{2} + \frac{a^{2}c^{2}}{b^{2}} = 1$$

$$c^{2}(\frac{a^{2}}{b^{2}} + 1) = 1 \rightarrow c^{2}(\frac{a^{2} + b^{2}}{b^{2}}) = 1$$

$$c^{2}\left(\frac{a^{2}}{b^{2}}+1\right)=1\Rightarrow c^{2}\left(\frac{a^{2}+b^{2}}{b^{2}}\right)=1$$

$$C = \pm \frac{b}{\sqrt{a^2 + b^2}}$$

$$\begin{split} &\text{Si } c = \frac{b}{\sqrt{a^2 + b^2}} \text{ alors } d = -\frac{ab}{b\sqrt{a^2 + b^2}} = \frac{-a}{\sqrt{a^2 + b^2}} \\ &\text{Si } c = \frac{-b}{\sqrt{a^2 + b^2}} \text{ alors } d = -\frac{ab}{b\sqrt{a^2 + b^2}} = \frac{a}{\sqrt{a^2 + b^2}} \\ &\text{Les deux vecteurs obtenus sont donc} \left(\frac{-b}{\sqrt{a^2 + b^2}}, \frac{a}{\sqrt{a^2 + b^2}} \right) \text{ et } \left(\frac{b}{\sqrt{a^2 + b^2}}, \frac{-a}{\sqrt{a^2 + b^2}} \right). \end{split}$$

3. Si le point C partage le segment AB dans un rapport $\frac{m}{n'}$ cela signifie que $\frac{\|\mathbf{x}\mathbf{C}\|}{\|\mathbf{C}\|} = \frac{m}{n}$. Il s'agit donc de démontrer que cette proportion est vraie.

-	
AFFIRMATION	JUSTIFICATION
$\overrightarrow{AB} = \overrightarrow{AC} + \overrightarrow{CB}$	Par la relation de Chasles.
$\overrightarrow{CB} = \overrightarrow{AB} - \overrightarrow{AC}$	Par la relation de Chasles.
$\overrightarrow{CB} = \overrightarrow{AB} - \frac{m}{m+n}\overrightarrow{AB}$	Puisque $\overrightarrow{AC} = \frac{m}{m+n} \overrightarrow{AB}$.
$\overrightarrow{CB} = \left(1 - \frac{m}{m+n}\right) \overrightarrow{AB}$	Puisque la multiplication d'un vecteur par un scalaire est distributive sur l'addition de scalaires.
$ \overrightarrow{CB} = \left(\frac{m+n}{m+n} - \frac{m}{m+n}\right) \overrightarrow{AB} \\ = \left(\frac{m+n-m}{m+n}\right) \overrightarrow{AB} \\ = \frac{n}{m+n} \overrightarrow{AB} $	
$\frac{\ \overline{AC}\ }{\ \overline{CB}\ } = \frac{\frac{m}{m+n}\ \overline{AB}\ }{\frac{n}{m+n}\ \overline{AB}\ }$	La norme d'un vecteur résultant de la multiplication d'un premier vecteur par un scalaire vaut la norme de ce vecteur multipliée par ce scalaire.
$\frac{\ \overrightarrow{AC}\ }{\ \overrightarrow{CB}\ } = \frac{\frac{m}{m+n}}{\frac{n}{m+n}} = \left(\frac{m}{m+n}\right)\left(\frac{m+n}{n}\right) = \frac{m}{n}$	

Puisque $\frac{\|\overrightarrow{AC}\|}{\|\overrightarrow{CB}\|} = \frac{m}{n'}$ alors le point C partage le segment AB dans un rapport $\frac{m}{n'}$

Banque de problèmes (suite)

Page 67

4. En suivant la première série d'instructions de l'internaute ~Einstein~, on peut écrire

$$\vec{z} = k_1(a, b) + k_2(c, d) = (k_1 a + k_2 c, k_1 b + k_2 d)$$

$$\vec{z} \cdot \vec{w} = (k_1 a + k_2 c, k_1 b + k_2 d) \cdot (c, d)$$

$$\vec{z} \cdot \vec{w} = (k_1 a + k_2 c) c + (k_1 b + k_2 d) d$$

$$\vec{z} \cdot \vec{w} = k_1 a c + k_2 c^2 + k_1 b d + k_2 d^2$$

En suivant la deuxième série d'instructions de l'internaute ~Einstein~, on peut écrire

 $k_1ac + k_2c^2 + k_1bd + k_2d^2 = 0$ $k_1ac + k_1bd + k_2c^2 + k_2d^2 = 0$ $k_1(ac + bd) + k_2(c^2 + d^2) = 0$

En suivant la dernière série de directives de l'internaute ~Einstein~, on peut écrire :

$$\frac{k(|ac+bd)+k(c^2+d^2)}{k_1}=0$$

$$(ac+bd)+\frac{k}{k_1}(c^2+d^2)=0$$

$$(ac+bd)+\frac{k}{k_1}(c^2+d^2)=0$$

$$\frac{k_1}{k_1}(c^2+d^2)=-(ac+bd)$$

$$\frac{k_2}{k_1}(c^2+d^2)=-(ac+bd)$$

$$\frac{k_2}{k_1}(c^2+d^2)=-(ac+bd)$$

$$\frac{k_2}{k_1}(c^2+d^2)=-(ac+bd)$$

$$\frac{k_2}{k_1}=-\frac{(ac+bd)}{c^2+d^2}$$

$$0, \ \overrightarrow{V}\cdot\overrightarrow{W}=(a,b)\cdot(c,d)=ac+bd$$
 et $\|\overrightarrow{W}\|^2=\left(\sqrt{c^2+d^2}\right)^2=c^2+d^2$.

$$0, \vec{v} \cdot \vec{w} = (a, b) \cdot (c, d) = ac + bd \text{ et } ||\vec{w}||^2 = (\sqrt{c^2 + d^2})^2 = c^2 + d^2.$$

© 2011, Les Éditions CEC inc. • Reproduction autorisée

VISION 4 ■ Ressources supplémentaires • Corrigé du manuel SN – Vol. 2 23

On en conclut que $\frac{k_2}{k_1} = -\frac{\overrightarrow{v} \cdot \overrightarrow{w}}{\|\overrightarrow{w}\|^2}$.

5. Les renseignements fournis dans le dessin montrent que :

- l'aire de ADEF est donnée par m $\overline{\rm AF} imes {
 m m} \, \overline{
 m AD}$;
- m \overline{AD} = m \overline{AC} = $\|\overline{AC}\|$;
- m AF correspond à la norme de la projection orthogonale de AB sur la droite qui supporte AC.

Calculer l'aire de ADEF revient donc à multiplier la norme de AC par la norme de la projection de AB sur la droite qui supporte AC. C'est la définition du produit scalaire AB · AC.

Les renseignements fournis dans le dessin montrent que :

- l'aire de AGHI est donnée par m $\overline{\rm AG} \times {\rm m} \ \overline{\rm AI}$
- m \overline{AI} = m \overline{AB} = $|\overline{AB}|$;
- m AG correspond à la norme de la projection orthogonale de AC sur la droite qui supporte AB.

Calculer l'aire de AGHI revient donc à multiplier la norme de \overline{AB} par la norme de la projection de \overline{AC} sur la droite qui supporte \overline{AB} . C'est la définition du produit scalaire $\overline{AC} \cdot \overline{AB}$.

Puisque le produit scalaire est commutatif, on a $\overrightarrow{AB} \cdot \overrightarrow{AC} = \overrightarrow{AC} \cdot \overrightarrow{AB}$. On en déduit que les quadrilatères ADEF et AGHI sont

Banque de problèmes (suite)

Page 68

- 6. Les composantes du vecteur associé au second déplacement de Johanne sont ≈ (4,33, -2,5).
- Le vecteur résultant de l'ensemble des déplacements de Johanne est $\bar{u} \approx (-3, -2) + (4, 33, -2, 5)$, soit $\approx (1, 33, -4, 5)$.
- Par rapport à la position initiale de Johanne, la position initiale d'Alfred est obtenue à la suite d'un déplacement dont les composantes sont ≈ (-0,35, 0,35).
- Le vecteur résultant de l'ensemble des déplacements d'Alfred correspond à $-3\vec{u}:-3\vec{u}\approx -3(1,33,-4,5)$, soit
- Pour rejoindre Alfred, Johanne doit effectuer un déplacement qui correspond à l'opposé de ses déplacements, augmenté $-\vec{u} - 3\vec{u} + (-0.35, 0.35) \approx -(1.33, -4.5) + (-3.99, 13.5) + (-0.35, 0.35)$, soit $\approx (-5.67, 18.35)$. des déplacements d'Alfred et du déplacement qui les séparait au début. Le vecteur résultant de ce trajet est donc :
- La norme de ce vecteur est environ $\sqrt{(-5,67)^2+(18,35)^2}$, soit $\approx 19,21$ km, et l'orientation de ce vecteur est environ de $180^\circ-$ arc tan $\frac{18,35}{5,67}$, soit $\approx 107,17^\circ$.
- 7. Les composantes a et c correspondent aux composantes de la projection de \vec{v} dans le plan xz. La norme de cette projection vaut $\|\vec{v}\|\cos 30^\circ = 13\cos 30^\circ$.

On a donc $c = 13\cos 30^{\circ}\cos 50^{\circ}$, soit $\approx 7,24$, $a = 13\cos 30^{\circ}\sin 50^{\circ}$, soit $\approx 8,62$ et $b = \left\|\overrightarrow{v}\right\|\sin 30^{\circ} = 13\sin 30^{\circ} = 6,5$. On en conclut que $\vec{v} \approx (8,62, 6,5, 7,24)$.

• Les composantes d et f correspondent aux composantes de la projection de \overrightarrow{w} dans le plan xz. La norme de cette projection vaut $\|\overrightarrow{w}\|\cos 25^\circ = 12\cos 25^\circ$.

Puisque la projection de \vec{w} dans le plan xz est située dans le $3^{\rm e}$ quadrant, on a :

soit $\approx 5,07$. $f = -12\cos 25^{\circ}\sin 20^{\circ}$, soit $\approx -3,72$, $d = -12\cos 25^{\circ}\cos 20^{\circ}$, soit $\approx -10,22$ et $e = \|\vec{w}\|\sin 25^{\circ} = 12\sin 25^{\circ}$, soit $\approx -10,22$ et $e = \|\vec{w}\|\sin 25^{\circ} = 12\sin 25^{\circ}$,

On en conclut que $\overrightarrow{w} \approx$ (-10,22, 5,07, -3,72).

- Ainsi :
- 24 VISION 4 ■ Ressources supplémentaires • Corrigé du manuel SN – Vol. 2

Banque de problèmes (suite)

8. La relation de Chasles permet d'affirmer que
$$\overrightarrow{PB} = \overrightarrow{PA} + \overrightarrow{AB}$$
 et $\overrightarrow{PC} = \overrightarrow{PA} + \overrightarrow{AB} + \overrightarrow{BC}$. On a donc : $\overrightarrow{PA} + \overrightarrow{PB} + \overrightarrow{PC} = \overrightarrow{0}$ $\overrightarrow{PA} + (\overrightarrow{PA} + \overrightarrow{AB}) + (\overrightarrow{PA} + \overrightarrow{AB}) + (\overrightarrow{PA} + \overrightarrow{AB} + \overrightarrow{BC}) = \overrightarrow{0}$ $\overrightarrow{3PA} + 2\overrightarrow{AB} + \overrightarrow{BC} = 0$ $\overrightarrow{PA} = \frac{-2\overrightarrow{AB} - \overrightarrow{BC}}{2\overrightarrow{PA}} = \frac{-2\overrightarrow{AB} - \overrightarrow{BC}}{2\overrightarrow{PC}}$

$$\overrightarrow{PA} = \frac{-2(6, -8) - (-10, 2)}{3}$$

$$\overline{PA} = \left(\frac{2}{3}, \frac{14}{3}\right)$$
On en déduit que $\overline{PB} = \left(\frac{16}{3}, \frac{-10}{3}\right)$ et $\overline{PC} = \left(-\frac{14}{3}, \frac{10}{3}\right)$

On en déduit que
$$\overrightarrow{PB} = \left(\frac{16}{3}, \frac{-10}{3}\right)$$
 et $\overrightarrow{PC} = \left(-\frac{14}{3}, \frac{-4}{3}\right)$.

•
$$\|\overline{PA}\| = \sqrt{(\frac{-2}{3})^2 + (\frac{14}{3})^2}$$
, soit $\approx 4,71$.

•
$$\|\overline{PB}\| = \sqrt{\left(\frac{16}{3}\right)^2 + \left(\frac{-10}{3}\right)^2}$$
, soit $\approx 6,28$.
• $\|\overline{PC}\| = \sqrt{\left(\frac{-14}{3}\right)^2 + \left(\frac{-4}{3}\right)^2}$, soit $\approx 4,85$.

9. Le déplacement qui permet à l'actrice de se rendre :

- du point A au point B est représenté par un vecteur d_1 orienté à 36° et dont la norme est environ 11 m;
- ullet du point B au point C est représenté par un vecteur d_2 orienté à 234° et dont la norme est 12 m.

Le déplacement qui permet au caméraman de suivre l'actrice :

- du point A au point B est représenté par un vecteur qui correspond à la projection de \vec{d}_i sur une droite inclinée à 23° par rapport à l'horizontale. La norme de ce vecteur est $|\vec{d}_i||\cos(36^\circ 23^\circ) = 11\cos 13^\circ$, soit ≈ 10.71 m. Puisque ce déplacement doit se faire en 3 s, le caméraman doit se déplacer à une vitesse d'environ 3,57 m/s;
- du point B au point C est représenté par un vecteur qui correspond à la projection de \overline{d}_s sur une droite inclinée à 23° par rapport à l'horizontale. La norme de ce vecteur est $\|\overline{d}_2\|\cos(234^\circ-180^\circ-23^\circ)=12\cos31^\circ$, soit $\approx 10,29$ m. Puisque ce déplacement doit se faire en 4 s, le caméraman doit se déplacer à une vitesse d'environ 2,57 m/s.

Le caméraman doit effectuer un premier déplacement de 10,71 m sur les rails vers sa droite, à une vitesse constante de 3,57 m/s pendant 3 s. Il doit ensuite rester immobile pendant 15 s, puis se déplacer de 10,29 m vers sa gauche pendant 4 s à une vitesse d'environ 2,57 m/s.